Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 215: 114773, 2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35489248

RESUMO

The 1H NMR spectra obtained from 56 different paracetamol tablets were thoroughly investigated to analyse and quantify besides paracetamol, the excipients and eventual minor components present in the formulations. In the NMR spectra the amide-iminol tautomerism of paracetamol was observed, with the iminol form present at a quantity of only 0.80% of the amide form. Furthermore, seventeen different components of the tablets were identified, ranging from major excipients like starch and polyvinylpyrrolidone (PVP) to minor components like different parabens, sorbate and triacetin. The similarity from all spectra in relation to each of the other spectra was calculated and based on the similarity table a hierarchical cluster analysis (HCA) was performed. Each of the components of the DMSO extracts of the tablets was quantified, providing a component table, which also was used for HCA. The quantitative analysis of paracetamol was determined to have a precision of 0.2% using the residual solvent signals as internal standard. The HCA of the similarity data and the component table were compared with the HCAs obtained by analysis of the crude NMR data. This clearly shows the limitations of multivariate data analysis and the strength of similarity calculations combined with differential NMR, especially in relation to the analysis of trace components. In fact, the spectrum is not a series of unrelated variables, but a superposition of a limited number of component spectra, and the quantities of these components were determined.


Assuntos
Acetaminofen , Excipientes , Acetaminofen/química , Análise por Conglomerados , Excipientes/química , Espectroscopia de Ressonância Magnética , Comprimidos/química
2.
Sci Total Environ ; 712: 136405, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31931198

RESUMO

Understanding the role of N-fixing leguminous trees for phosphorus (P) cycling in highly weathered tropical soils is relevant for the conservation of natural forests as well as the sustainable management of agroforests and forest plantations with low P input in the Brazilian Atlantic Forest region. We hypothesized that N-fixing leguminous trees can increase the availability of soil P by exploiting different P sources without causing a depletion of soil organic P due to efficient biogeochemical cycling, but empirical evidence remains scarce. For this purpose, 31P nuclear magnetic resonance spectroscopy (31P NMR) was used for quantifying soil P forms and the Hedley sequential extraction to determine soil P fractions. The studied sites were forestry systems with leguminous trees: mixed forest plantations with different proportions of fast-growing N-fixing leguminous trees; pure plantations, and agroforestry systems with leguminous trees. The results show that all N-fixing leguminous trees and N mineral fertilization positively affected the concentrations of available soil P in relation to the control treatments. There were increases of all P fractions through cycling in all forest sites. 31P NMR spectra clearly identified and quantified that a large amount of phosphomonoesters followed by phosphodiesters in the form of DNA, as well as high reserves of Pi species (ortho-P and pyrophosphate) in the first eleven years of growth at pure plantations, mixed plantations or agroforests. The relations between both ortho-P and DNA with the resin-Pi, NaHCO3-Pi and NaOH-Pi fractions suggest that both analysis methods provide complementary information about the soil P transformations. Thus, the paper highlights the importance of the use of different N-fixing leguminous tree species under different environmental conditions, production systems and management practices for recovering heavily degraded areas, which may be a suitable strategy through efficient management of P in highly weathered tropical soils in the Brazilian Atlantic Forest biome.


Assuntos
Fabaceae , Solo , Árvores , Brasil , Florestas , Nitrogênio , Fósforo , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...