Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(1): 101-118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36974933

RESUMO

The emergence of varying levels of resistance to currently available antimalarial drugs significantly threatens global health. This factor heightens the urgency to explore bioactive compounds from natural products with a view to discovering and developing newer antimalarial drugs with novel mode of actions. Therefore, we evaluated the inhibitory effects of sixteen phytocompounds from Cymbopogon citratus leaf extract against Plasmodium falciparum drug targets such as P. falciparum circumsporozoite protein (PfCSP), P. falciparum merozoite surface protein 1 (PfMSP1) and P. falciparum erythrocyte membrane protein 1 (PfEMP1). In silico approaches including molecular docking, pharmacophore modeling and 3D-QSAR were adopted to analyze the inhibitory activity of the compounds under consideration. The molecular docking results indicated that a compound swertiajaponin from C. citratus exhibited a higher binding affinity (-7.8 kcal/mol) to PfMSP1 as against the standard artesunate-amodiaquine (-6.6 kcal/mol). Swertiajaponin also formed strong hydrogen bond interactions with LYS29, CYS30, TYR34, ASN52, GLY55 and CYS28 amino acid residues. In addition, quercetin another compound from C. citratus exhibited significant binding energies -6.8 and -8.3 kcal/mol with PfCSP and PfEMP1, respectively but slightly lower than the standard artemether-lumefantrine with binding energies of -7.4 kcal/mol against PfCSP and -8.7 kcal/mol against PfEMP1. Overall, the present study provides evidence that swertiajaponin and other phytomolecules from C. citratus have modulatory properties toward P. falciparum drug targets and thus may warrant further exploration in early drug discovery efforts against malaria. Furthermore, these findings lend credence to the folkloric use of C. citratus for malaria treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Cymbopogon , Malária Falciparum , Malária , Antimaláricos/química , Cymbopogon/química , Simulação de Acoplamento Molecular , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Simulação por Computador , Extratos Vegetais/farmacologia , Extratos Vegetais/química
2.
Toxicol Rep ; 10: 269-280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876028

RESUMO

Some therapeutic and beneficial health properties of the Theobroma cacao leaf have been documented. This study evaluated the ameliorative effect of Theobroma cacao-fortified feed against potassium bromate-induced oxidative damage in male Wistar rats. Thirty rats were randomly grouped into A-E. Except for E (the negative control), the rats in the other groups were administered 0.5 ml of 10 mg/kg body weight of potassium bromate daily using oral gavage and then allowed access to feed and water ad libitum. Groups B, C, and D were fed with 10 %, 20 %, and 30 % leaf-fortified feed respectively, while the negative and positive control (A) was fed with commercial feed. The treatment was carried out consecutively for fourteen days. In the liver and kidney, there was a significant increase (p < 0.05) in total protein concentration, a significant decrease (P < 0.05) in MDA level, and SOD activity in the fortified feed group compared to the positive control. Furthermore, in the serum, there was a significant increase (p < 0.05) in the albumin concentration, and ALT activity, and a significant decrease (p < 0.05) in urea concentration in the fortified feed groups compared to the positive control. The histopathology of the liver and kidney in the treated groups showed moderate cell degeneration compared to the positive control group. Antioxidant activity due to the presence of flavonoids and metal chelating activity of fiber in Theobroma cacao leaf could be responsible for the ameliorative effect of the fortified feed against potassium bromate-induced oxidative damage.

3.
J Biomol Struct Dyn ; 41(22): 13015-13028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36729100

RESUMO

The low constitutive activation of Liver X receptor, an endogenous nuclear receptor with two subtypes (α and ß), is a condition lying at the crossroad of cancer and cardiovascular disease. Both natural and synthetic Liver X receptor agonists have reportedly shown remarkable antiproliferative and atheroprotective effects but the repeated doses of its synthetic ones are also paradoxically associated with hyperlipidaemic effects and neurotoxicity, though attributed to the alpha subtype. This highlights the need for novel, safe, and potent LXR-beta-selective agonists. Hypocholesterolaemic effects of black theaflavins have been widely reported, but data on the exact theaflavin compound (s) responsible for these effects is currently lacking. Neither is information on the possible modulatory effects of the compound (s) on LXR-beta nor its possible implications in the context of drug development for cardiovascular diseases and cancers is explored. On this account, we investigated the potential interaction of four main theaflavin monomers (TF1, TF2A, TF2B & TF3) with human LXR-beta through robust computational modelling that entails molecular docking, free energy calculations and molecular dynamics simulations. The ligands were further profiled (in silico) for absorption, distribution, metabolism, excretion, and toxicological properties. Our result revealed theaflavin TF2B as a putative LXR-beta agonist, possibly responsible for the widely observed hypocholesterolaemic effect in black tea. This finding, while encouraging, needs to be experimentally verified in wet studies.Communicated by Ramaswamy H. Sarma.


Assuntos
Camellia sinensis , Chá , Humanos , Receptores X do Fígado , Simulação de Acoplamento Molecular , Antioxidantes/farmacologia , Simulação de Dinâmica Molecular
5.
BMC Complement Med Ther ; 22(1): 227, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028848

RESUMO

BACKGROUND: Data available support that ninety percent of male infertility cases are due to low sperm counts. There is a scarcity of data on the medicinal effects of cannabis on fertility. This study evaluated testicular function and sperm quality modulation with cannabis in rats. METHODOLOGY: Twenty-five male Wistar rats were randomly grouped into five: A, B, C, and D, each group have 5 rats. A (control): 0.2 ml 2% DMSO, B (vitamin C): 90 mg/kg body weight, C, D, and E were administered: 5 mg/kg, 10 mg/kg and 20 mg/kg body weight of ethanolic leaf extract of cannabis (ELEC) respectively. The rats were sacrificed 24 h after the last day of the 60 day oral administrations. Flavonoids were the predominant phytochemical present in the extract while quercetin, kemferol, silyman and gallic acid were identified. RESULTS: The results showed a significant improvement (p < 0.05) in sperm quality and a significant increase in the concentrations of follicle-stimulating hormone, luteinizing hormone, triglycerides, cholesterol, and total protein determination compared to the normal control. Similarly, there was a significant increase (p < 0.05) in the activities of acid phosphatase, alkaline phosphatase, and superoxide dismutase compared to the normal control. RAC-alpha serine/threonine-protein kinase (AKT1)-silymarin complexes (-8.30 kcal/mol) and androgen receptor (AR)-quercetin complexes (9.20 kcal/mol) had the highest affinity. CONCLUSION: The antioxidant effects of the flavonoids in the ethanolic extract of cannabis may have protected testicular and sperm cells from oxidative damage. Biochemical processes and histopathological morphology were preserved by cannabis. The docking prediction suggests that the bioactive principle of cannabis may activate the androgenic receptors. The androgenic receptor modulation may be attributed to silymarin and quercetin.


Assuntos
Cannabis , Silimarina , Animais , Peso Corporal , Masculino , Simulação de Acoplamento Molecular , Extratos Vegetais , Quercetina , Ratos , Ratos Wistar , Sementes , Espermatozoides
6.
Oxid Med Cell Longev ; 2021: 5522981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804368

RESUMO

Neurodegenerative diseases (NDs) like Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease predominantly pose a significant socioeconomic burden. Characterized by progressive neural dysfunction coupled with motor or intellectual impairment, the pathogenesis of ND may result from contributions of certain environmental and molecular factors. One such condition is hypoxia, characterized by reduced organ/tissue exposure to oxygen. Reduced oxygen supply often occurs during the pathogenesis of ND and the aging process. Despite the well-established relationship between these two conditions (i.e., hypoxia and ND), the underlying molecular events or mechanisms connecting hypoxia to ND remain ill-defined. However, the relatedness may stem from the protective or deleterious effects of the transcription factor, hypoxia-inducible factor 1-alpha (HIF-1α). The upregulation of HIF-1α occurs in the pathogenesis of most NDs. The dual function of HIF-1α in acting as a "killer factor" or a "protective factor" depends on the prevailing local cellular condition. The kynurenine pathway is a metabolic pathway involved in the oxidative breakdown of tryptophan. It is essential in neurotransmission and immune function and, like hypoxia, associated with ND. Thus, a good understanding of factors, including hypoxia (i.e., the biochemical implication of HIF-1α) and kynurenine pathway activation in NDs, focusing on Alzheimer's disease could prove beneficial to new therapeutic approaches for this disease, thus the aim of this review.


Assuntos
Doença de Alzheimer/patologia , Hipóxia/fisiopatologia , Cinurenina/metabolismo , Redes e Vias Metabólicas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Humanos
7.
Toxicol Res (Camb) ; 10(4): 761-770, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34484667

RESUMO

Alcoholism has been linked to problems with male reproductive function. The combined effects of alcohol, cannabis, and tobacco were compared in this study. A total of 35 rats were assigned randomly into seven groups A-G: animals in A were administered distilled water. Animals in B-G were either administered alcohol orally (30 ml 40% alcohol) or exposed to smoke from ignited tobacco (exposure to smoke from 0.7 g tobacco for 5 min) or cannabis (exposure to smoke from 0.7 g tobacco and cannabis for 5 min): B (orally administered alcohol), C (exposed to the smoke from tobacco), D (exposed to smoke from cannabis), E (treated with alcohol and exposed to smoke from tobacco), F (treated with alcohol and exposed to smoke from cannabis), G (treated with alcohol and exposed to smokes from tobacco and cannabis). Assays were carried on the testicular homogenate after a 14-day treatment. There was a significant increase in activity of alkaline phosphatase (P ≤ 0.05), concentrations of cholesterol, glutathione reductase, and malondialdehyde in treated rats by the co-administration of alcohol with cannabis and tobacco compared with the control group. The combined treatment also caused degeneration and morphological distortions of testicular cells. The biochemical and histoarchitectural change was due to oxidative damage attributable to the synergistic effects. The high binding energy of tetrahydrocannabinol ligand to prostate acid phosphatase may be a prediction that the ligand can have an inhibitory effect on the function of enzymes in the prostate.

8.
Andrologia ; 53(7): e14092, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33945159

RESUMO

Erectile dysfunction (ED) is one of the main challenges occurring among men worldwide, and is characterised by trouble getting or keeping steady erection during sexual intercourse. Various drugs like sildenafil, a phosphodiesterase-5 inhibitor (PDE-5) are freely available in the pharmacies, though normally associated with several adverse. This study was designed to assess the molecular relations obtainable between catechin, garcinal, garcinoic acid and d-tocotrienol compounds isolated from Garcinia kola and targeted receptor linked to ED. These processes include the molecular docking of catechin, garcinal, garcinoic acid, d-tocotrienol, and sildenafil to receptor: PDE-5 via AutoDock Vina. Following the docking of catechin, garcinal, garcinoic acid and d-tocotrienol with the PDE-5-receptor protein, we observed that all are protein inhibitors with garcinoic acid showing better binding affinity -10.0 kcal/mol with PDE-5 receptor relevant to ED. Hence, the results provided insights into the development of garcinoic acid as a replacement for present ED management, with further analysis worth considering.


Assuntos
Disfunção Erétil , Garcinia kola , Disfunção Erétil/tratamento farmacológico , Humanos , Masculino , Simulação de Acoplamento Molecular , Inibidores da Fosfodiesterase 5/farmacologia , Sementes , Citrato de Sildenafila/farmacologia
9.
Int J Food Sci ; 2020: 8873341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195686

RESUMO

Soaking and incorporation of legumes for fortification are essential to a complementary food production process. Cassava, orange-fleshed potato, and cowpeas are sustainably cheap, locally available, and underutilized for food biofortification. This study investigated the effect of cowpea soaking time (3, 6, and 9 h) on different composition ratios of cassava, cowpea, and orange-fleshed sweet potato (CCP) blends (50 : 40 : 10 (EC), 50 : 30 : 20 (FC), 50 : 20 : 30 (GC), and 50 : 50 : 0 (HC)). Each blend was assayed for pH, antinutrient, antioxidant, and proximate contents. Results obtained showed that the CCP blends were significantly influenced by the length of cowpea soaking. Moisture and fiber content decreased significantly (P ≤ 0.05) with increased steeping time (3 to 9 h) for the cassava-cowpea-OFSP blends. The blends were significantly different (P ≤ 0.05) in terms of their protein, fiber, fat, ash, and carbohydrate contents. The moisture content of the EC blend was significantly different from only FC and HC blends, respectively. Six (6) hours of soaking showed no significant difference in the nutritional composition of the flour samples compared with 9 hours. The soaking length optimizes the health and nutrient-promoting factors in the various blend samples while also reaffirming cowpeas as a viable biofortification option for use in complementary food production.

10.
Parasitol Res ; 119(6): 1925-1941, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279093

RESUMO

Toxoplasmosis is a common parasitic disease caused by Toxoplasma gondii. Limitations of available treatments motivate the search for better therapies for toxoplasmosis. In this study, we synthesized a series of new imidazole derivatives: bis-imidazoles (compounds 1-8), phenyl-substituted 1H-imidazoles (compounds 9-19), and thiopene-imidazoles (compounds 20-26). All these compounds were assessed for in vitro potential to restrict the growth of T. gondii. To explore the structure-activity relationships, molecular analyses and bioactivity prediction studies were performed using a standard molecular model. The in vitro results, in combination with the predictive model, revealed that the imidazole derivatives have excellent selectivity activity against T. gondii versus the host cells. Of the 26 compounds screened, five imidazole derivatives (compounds 10, 11, 18, 20, and 21) shared a specific structural moiety and exhibited significantly high selectivity (> 1176 to > 27,666) towards the parasite versus the host cells. These imidazole derivatives are potential candidates for further studies. We show evidence that supports the antiparasitic action of the imidazole derivatives. The findings are promising in that they reinforce the prospects of imidazole derivatives as alternative and effective antiparasitic therapy as well as providing evidence for a probable biological mechanism.


Assuntos
Antiparasitários/química , Antiparasitários/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Células Cultivadas , Humanos , Imidazóis/síntese química , Modelos Moleculares , Relação Estrutura-Atividade , Toxoplasmose/parasitologia
11.
Yale J Biol Med ; 92(3): 369-383, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31543702

RESUMO

Toxoplasmosis, which affects more than a billion people worldwide, is a common parasitic infection caused by the obligate intracellular parasite, Toxoplasmagondii. Current treatment strategies have several limitations, including unwanted side effects and poor efficacy. Therefore, newer therapies are needed for toxoplasmosis. Drug repurposing and screening of a vast array of natural and/or synthetic compounds is a viable option for antiparasitic drug discovery. In this study, we screened 62 compounds comprising natural products (NPs) and FDA-approved (FDA) drugs, to identify the hit compounds that suppress the growth of T. gondii. To determine the parasite inhibitory potential of the compounds, host mammalian cells were infected with a transgenic T. gondii strain, and the viability of the parasite was evaluated by luminescence. Of the 62 compounds, tubericidin, sulfuretin, peruvoside, resveratrol, narasin and diacetoxyscirpenol of the natural product isolates, as well as bortezonib, 10-Hydroxycamtothecin, mebendazole, niflumic acid, clindamycin HCl, mecamylamine, chloroquine, mitomycin C, fenbendazole, daunorubicin, atropine, and cerivastatin of FDA molecules were identified as "hits" with ≥ 40 percent anti-parasite action. Additionally, mitomycin C, radicicol, naringenin, gitoxigenin, menadione, botulin, genistin, homobutein, and gelsemin HCl of the natural product isolates, as well as lomofungin, cyclocytidine, prazosin HCl, cerivastatin, camptothecin, flufenamic acid, atropine, daunorubicin, and fenbendazole of the FDA compounds exhibited cytotoxic activity, reducing the host viability by ≥ 30 percent. Our findings not only support the prospects of drug repurposing, but also indicate that screening a vast array of molecules may provide viable sources of alternative therapies for parasitic infection.


Assuntos
Antiprotozoários/farmacologia , Antiprotozoários/toxicidade , Materiais Biocompatíveis/farmacologia , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Toxoplasma/efeitos dos fármacos , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Aprovação de Drogas , Fibroblastos/efeitos dos fármacos , Fibroblastos/parasitologia , Humanos , Masculino , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/isolamento & purificação , Estados Unidos , United States Food and Drug Administration
12.
Artif Cells Nanomed Biotechnol ; 46(sup3): S86-S94, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30033773

RESUMO

The Trypanosoma and Toxoplasma spp, are etiological agents of diseases capable of causing significant morbidity, mortality and economic burden, predominantly in developing countries. Currently, there are no effective vaccines for the diseases caused by these parasites; therefore, therapy relies heavily on antiprotozoal drugs. However, the treatment options for these parasitic diseases are limited, thus underscoring the need for new anti-protozoal agents. Here, we investigated the anti-parasite action of nanoparticles. We found that the nanoparticles have strong and selective in vitro activity against T. b. brucei but moderate in vitro activity against T. congolense and T. evansi. An estimation of the in vitro anti-Trypanosoma efficacy showed that the nanoparticles had ≥200-fold selective activity against the parasite versus mammalian cells. Moreover, the nanoparticle alloys moderately suppressed the in vitro growth of T. gondii by ≥60%. In our in vivo study, the nanoparticles appeared to exhibit a trypanostatic effect, but did not totally suppress the rat parasite burden, thereby failing to appreciably extend the survival time of infected animals compared with the untreated control. In conclusion, this is the first study to demonstrate the selective in vitro anti-Trypanosoma action of nanoparticles and thus supports the potential of nanoparticles as alternative anti-parasitic agents.


Assuntos
Doença de Chagas/tratamento farmacológico , Portadores de Fármacos , Nanopartículas Metálicas , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Tripanossomicidas , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Doença de Chagas/metabolismo , Doença de Chagas/patologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Ratos , Ratos Wistar , Toxoplasmose/metabolismo , Toxoplasmose/patologia , Tripanossomicidas/química , Tripanossomicidas/farmacocinética , Tripanossomicidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...