Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(46): 465803, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32693394

RESUMO

Domain wall motion along ferrimagnets is evaluated using micromagnetic simulations and a collective-coordinates model, both considering two sublattices with independent parameters. Analytical expressions are derived for strips on top of either a heavy metal or a substrate with negligible interfacial Dzyaloshinskii-Moriya interaction. The work focuses its findings in this latter case, with a field-driven domain wall motion depicting precessional dynamics which become rigid at the angular momentum compensation temperature, and a current-driven dynamics presenting more complex behavior, depending on the polarization factors for each sublattice. Importantly, our analyses provide also novel interpretation of recent evidence on current-driven domain wall motion, where walls move either along or against the current depending on temperature. Besides, our approach is able to substantiate the large non-adiabatic effective parameters found for these systems.

2.
Sci Rep ; 7(1): 11909, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928378

RESUMO

Ultrathin ferromagnetic strips with high perpendicular anisotropy have been proposed for the development of memory devices where the information is coded in tiny domains separated by domain walls. The design of practical devices requires creating, manipulating and detecting domain walls in ferromagnetic strips. Recent observations have shown highly efficient current-driven domain wall dynamics in multilayers lacking structural symmetry, where the walls adopt a chiral structure and can be driven at high velocities. However, putting such a device into practice requires the continuous and synchronous injection of domain walls as the first step. Here, we propose and demonstrate an efficient and simple scheme for nucleating domain walls using the symmetry of the spin orbit torques. Trains of short sub-nanosecond current pulses are injected in a double bit line to generate a localized longitudinal Oersted field in the ferromagnetic strip. Simultaneously, other current pulses are injected through the heavy metal under the ferromagnetic strip. Notably, the Slonczewski-like spin orbit torque assisted by the Oersted field allows the controlled injection of a series of domain walls, giving rise to a controlled manner for writing binary information and, consequently, to the design of a simple and efficient domain wall shift register.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...