Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Oncol ; 49(7): 914-21, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20831478

RESUMO

BACKGROUND: Non-invasive visualization of tumor biological and molecular processes of importance to diagnosis and treatment response is likely to be critical in individualized cancer therapy. Since conventional static (18)F-FDG PET with calculation of the semi-quantitative parameter standardized uptake value (SUV) may be subject to many sources of variability, we here present an approach of quantifying the (18)F-FDG uptake by analytic two-tissue compartment modeling, extracting kinetic tumor parameters from dynamic (18)F-FDG PET. Further, we evaluate the potential of such parameters in radiotherapy response assessment. MATERIAL AND METHODS: Male, athymic mice with prostate carcinoma xenografts were subjected to dynamic PET either untreated (n=8) or 24 h post-irradiation (7.5 Gy single dose, n=8). After 10 h of fasting, intravenous bolus injections of 10-15 MBq (18)F-FDG were administered and a 1 h dynamic PET scan was performed. 4D emission data were reconstructed using OSEM-MAP, before remote post-processing. Individual arterial input functions were extracted from the image series. Subsequently, tumor (18)F-FDG uptake was fitted voxel-by-voxel to a compartment model, producing kinetic parameter maps. RESULTS: The kinetic model separated the (18)F-FDG uptake into free and bound tracer and quantified three parameters; forward tracer diffusion (k(1)), backward tracer diffusion (k(2)), and rate of (18)F-FDG phosphorylation, i.e. the glucose metabolism (k(3)). The fitted kinetic model gave a goodness of fit (r(2)) to the observed data ranging from 0.91 to 0.99, and produced parametrical images of all tumors included in the study. Untreated tumors showed homogeneous intra-group median values of all three parameters (k(1), k(2) and k(3)), whereas the parameters significantly increased in the tumors irradiated 24 h prior to (18)F-FDG PET. CONCLUSIONS: This study demonstrates the feasibility of a two-tissue compartment kinetic analysis of dynamic (18)F-FDG PET images. If validated, extracted parametrical maps might contribute to tumor biological characterization and radiotherapy response assessment.


Assuntos
Fluordesoxiglucose F18/farmacocinética , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Tomografia por Emissão de Pósitrons/métodos , Animais , Disponibilidade Biológica , Compartimentos de Líquidos Corporais/metabolismo , Estudos de Viabilidade , Humanos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/metabolismo , Prognóstico , Distribuição Tecidual , Resultado do Tratamento , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...