Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202402084, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975664

RESUMO

Complex oxides Eu2MeO6 (Me - Mo, W), Eu2W2O9 were obtained by a solid-phase reaction between binary oxides. The thermodynamic and kinetic mechanisms of the reaction processes were established using a variety of physical-chemical methods. All compounds obtained in this work crystallize in the low-symmetry monoclinic system, forming complex framework structures, which determine a set of very valuable physical-chemical properties. Comparison of experimental Kubelka-Munk functions and DFT- calculated absorption spectra shows adequate agreement and reveals the origin of the fundamental absorption. In addition, the deficiency in DFT calculations in the part of mutual contribution of CTBs of Mo-O and W-O, from one side, and Eu-O contributions, from the other side, is reported. Calculations of absorption spectra are shown to be superior to band structure analysis in the determination of optical band gaps. Additionally, luminescent properties of Eu2MeO6 and Eu2W2O9 compounds were investigated. These studies provide a better understanding of the electronic and optical properties of the compounds Eu2MeO6 and Eu2W2O9, along with their potential applications in various areas.

2.
Inorg Chem ; 62(31): 12423-12433, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37490422

RESUMO

New polymorphic modifications of double sulfates ß-AEu(SO4)2 (A-Rb+, Cs+) were obtained by the hydrothermal method, the structure of which differs significantly from the monoclinic modifications obtained earlier by solid-state methods. According to single-crystal diffraction data, it was found that the compounds crystallize in the orthorhombic system, space group Pnna, with parameters ß-RbEu(SO4)2: a = 9.4667(4) Å, b = 13.0786(5) Å, c = 5.3760(2) Å, V = 665.61(5) Å3; ß-CsEu(SO4)2: a = 9.5278(5) Å, b = 13.8385(7) Å, c = 5.3783(3) Å, V = 709.13(7) Å3. The asymmetric part of the unit cell contains one-half Rb+/Cs+ ion, one-half Eu3+ ion, both in special sites, and one SO42- ion. Both compounds exhibit nonlinear negative thermal expansion. According to the X-ray structural analysis and theoretical calculations, the polarizing effect of the alkali metal ion has a decisive influence on the demonstration of this phenomenon. Experimental indirect band gaps of ß-Rb and ß-Cs are 4.05 and 4.11 eV, respectively, while the direct band gaps are 4.48 and 4.54 eV, respectively. The best agreement with theoretical calculations is obtained using the ABINIT package employing PAW pseudopotentials with hybrid PBE0 functional, while norm-conserving pseudopotentials used in the frame of CASTEP code and LCAO approach in the Crystal package gave worse agreement. The properties of alkali ions also significantly affect the luminescent properties of the compounds, which leads to a strong temperature dependence of the intensity of the 5D0 → 7F4 transition in ß-CsEu(SO4)2 in contrast to much weaker dependence of this kind in ß-RbEu(SO4)2.

3.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838617

RESUMO

A new multicationic structurally disordered K5FeHf(MoO4)6 crystal belonging to the molybdate family is synthesized by the two-stage solid state reaction method. The characterization of the electronic and vibrational properties of the K5FeHf(MoO4)6 was performed using density functional theory calculations, group theory, Raman and infrared spectroscopy. The vibrational spectra are dominated by vibrations of the MoO4 tetrahedra, while the lattice modes are observed in a low-wavenumber part of the spectra. The experimental gap in the phonon spectra between 450 and 700 cm-1 is in a good agreement with the simulated phonon density of the states. K5FeHf(MoO4)6 is a paramagnetic down to 4.2 K. The negative Curie-Weiss temperature of -6.7 K indicates dominant antiferromagnetic interactions in the compound. The direct and indirect optical bandgaps of K5FeHf(MoO4)6 are 2.97 and 3.21 eV, respectively. The K5FeHf(MoO4)6 bandgap narrowing, with respect to the variety of known molybdates and the ab initio calculations, is explained by the presence of Mott-Hubbard optical excitation in the system of Fe3+ ions.


Assuntos
Eletricidade , Análise Espectral Raman , Espectrofotometria Infravermelho , Temperatura
4.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293295

RESUMO

We report on the novel heterometallic quaternary sulfides SrLnCuS3 (Ln = La, Nd, Tm), obtained as both single crystals and powdered samples. The structures of both the single crystal and powdered samples of SrLaCuS3 and SrNdCuS3 belong to the orthorhombic space group Pnma but are of different structural types, while both samples of SrTmCuS3 crystallize in the orthorhombic space group Cmcm with the structural type KZrCuS3. Three-dimensional crystal structures of SrLaCuS3 and SrNdCuS3 are formed from the (Sr/Ln)S7 capped trigonal prisms and CuS4 tetrahedra. In SrLaCuS3, alternating 2D layers are stacked, while the main backbone of the structure of SrNdCuS3 is a polymeric 3D framework [(Sr/Ln)S7]n, strengthened by 1D polymeric chains (CuS4)n with 1D channels, filled by the other Sr2+/Ln3+ cations, which, in turn, form 1D dimeric ribbons. A 3D crystal structure of SrTmCuS3 is constructed from the SrS6 trigonal prisms, TmS6 octahedra and CuS4 tetrahedra. The latter two polyhedra are packed together into 2D layers, which are separated by 1D chains (SrS6)n and 1D free channels. In both crystal structures of SrLaCuS3 obtained in this work, the crystallographic positions of strontium and lanthanum were partially mixed, while only in the structure of SrNdCuS3, solved from the powder X-ray diffraction data, were the crystallographic positions of strontium and neodymium partially mixed. Band gaps of SrLnCuS3 (Ln = La, Nd, Tm) were found to be 1.86, 1.94 and 2.57 eV, respectively. Both SrNdCuS3 and SrTmCuS3 were found to be paramagnetic at 20-300 K, with the experimental magnetic characteristics being in good agreement with the corresponding calculated parameters.


Assuntos
Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/química , Cristalografia por Raios X , Sulfetos , Neodímio , Lantânio , Pós , Cátions/química , Estrôncio
5.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807213

RESUMO

Praseodymium sulfate was obtained by the precipitation method and the crystal structure was determined by Rietveld analysis. Pr2(SO4)3 is crystallized in the monoclinic structure, space group C2/c, with cell parameters a = 21.6052 (4), b = 6.7237 (1) and c = 6.9777 (1) Å, ß = 107.9148 (7)°, Z = 4, V = 964.48 (3) Å3 (T = 150 °C). The thermal expansion of Pr2(SO4)3 is strongly anisotropic. As was obtained by XRD measurements, all cell parameters are increased on heating. However, due to a strong increase of the monoclinic angle ß, there is a direction of negative thermal expansion. In the argon atmosphere, Pr2(SO4)3 is stable in the temperature range of T = 30-870 °C. The kinetics of the thermal decomposition process of praseodymium sulfate octahydrate Pr2(SO4)3·8H2O was studied as well. The vibrational properties of Pr2(SO4)3 were examined by Raman and Fourier-transform infrared absorption spectroscopy methods. The band gap structure of Pr2(SO4)3 was evaluated by ab initio calculations, and it was found that the valence band top is dominated by the p electrons of oxygen ions, while the conduction band bottom is formed by the d electrons of Pr3+ ions. The exact position of ZPL is determined via PL and PLE spectra at 77 K to be at 481 nm, and that enabled a correct assignment of luminescent bands. The maximum luminescent band in Pr2(SO4)3 belongs to the 3P0 → 3F2 transition at 640 nm.

6.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163428

RESUMO

In this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the Eu+2Ln+3Cu+1Se3 composition. Crystal structures of the obtained compounds were refined by the derivative difference minimization (DDM) method from the powder X-ray diffraction data. The structures are found to belong to orthorhombic space groups Pnma (structure type Ba2MnS3 for EuLaCuSe3 and structure type Eu2CuS3 for EuLnCuSe3, where Ln = Sm, Gd, Tb, Dy, Ho and Y) and Cmcm (structure type KZrCuS3 for EuLnCuSe3, where Ln = Tm, Yb and Lu). Space groups Pnma and Cmcm were delimited based on the tolerance factor t', and vibrational spectroscopy additionally confirmed the formation of three structural types. With a decrease in the ionic radius of Ln3+ in the reported structures, the distortion of the (LnCuSe3) layers decreases, and a gradual formation of the more symmetric structure occurs in the sequence Ba2MnS3 → Eu2CuS3 → KZrCuS3. According to magnetic studies, compounds EuLnCuSe3 (Ln = Tb, Dy, Ho and Tm) each exhibit ferrimagnetic properties with transition temperatures ranging from 4.7 to 6.3 K. A negative magnetization effect is observed for compound EuHoCuSe3 at temperatures below 4.8 K. The magnetic properties of the discussed selenides and isostructural sulfides were compared. The direct optical band gaps for EuLnCuSe3, subtracted from the corresponding diffuse reflectance spectra, were found to be 1.87-2.09 eV. Deviation between experimental and calculated band gaps is ascribed to lower d states of Eu2+ in the crystal field of EuLnCuSe3, while anomalous narrowing of the band gap of EuYbCuSe3 is explained by the low-lying charge-transfer state. Ab initio calculations of the crystal structures, elastic properties and phonon spectra of the reported compounds were performed.


Assuntos
Elementos da Série dos Lantanídeos/química , Compostos Organometálicos/síntese química , Selênio/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Difração de Pó , Difração de Raios X
7.
Molecules ; 26(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34885937

RESUMO

A set of new triple molybdates, LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45, was successfully manufactured by the microwave-accompanied sol-gel-based process (MAS). Yellow molybdate phosphors LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45 with variation of the LixNa1-x (x = 0, 0.05, 0.1, 0.2, 0.3) ratio under constant doping amounts of Ho3+ = 0.05 and Yb3+ = 0.45 were obtained, and the effect of Li+ on their spectroscopic features was investigated. The crystal structures of LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45 (x = 0, 0.05, 0.1, 0.2, 0.3) at room temperature were determined in space group I41/a by Rietveld analysis. Pure NaCaGd0.5Ho0.05Yb0.45(MoO4)3 has a scheelite-type structure with cell parameters a = 5.2077 (2) and c = 11.3657 (5) Å, V = 308.24 (3) Å3, Z = 4. In Li-doped samples, big cation sites are occupied by a mixture of (Li,Na,Gd,Ho,Yb) ions, and this provides a linear cell volume decrease with increasing Li doping level. The evaluated upconversion (UC) behavior and Raman spectroscopic results of the phosphors are discussed in detail. Under excitation at 980 nm, the phosphors provide yellow color emission based on the 5S2/5F4 → 5I8 green emission and the 5F5 → 5I8 red emission. The incorporated Li+ ions gave rise to local symmetry distortion (LSD) around the cations in the substituted crystalline structure by the Ho3+ and Yb3+ ions, and they further affected the UC transition probabilities in triple molybdates LixNa1-xCaGd0.5(MoO4)3:Ho3+0.05/Yb3+0.45. The complex UC intensity dependence on the Li content is explained by the specificity of unit cell distortion in a disordered large ion system within the scheelite crystal structure. The Raman spectra of LixNa1-xCaGd0.5(MoO4)3 doped with Ho3+ and Yb3+ ions were totally superimposed with the luminescence signal of Ho3+ ions in the range of Mo-O stretching vibrations, and increasing the Li+ content resulted in a change in the Ho3+ multiplet intensity. The individual chromaticity points (ICP) for the LiNaCaGd(MoO4)3:Ho3+,Yb3+ phosphors correspond to the equal-energy point in the standard CIE (Commission Internationale de L'Eclairage) coordinates.

8.
Inorg Chem ; 57(21): 13279-13288, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351092

RESUMO

Silver-europium double sulfate AgEu(SO4)2 was obtained by solid-phase reaction between Ag2SO4 and Eu2(SO4)3. The crystal structure of AgEu(SO4)2 was determined by Monte Carlo method with simulated annealing, and after that, it was refined by the Rietveld method from X-ray powder diffraction data. The compound crystallizes in the triclinic symmetry, space group P1̅ ( a = 0.632929(4), b = 0.690705(4), c = 0.705467(4) nm, α = 98.9614(4), ß = 84.5501(4), γ = 88.8201(4)°, V = 0.303069(3) nm3). Two types of sulfate tetrahedra were found in the structure, which significantly affects the spectroscopic properties in the IR-range. In the temperature range of 143-703 K, the average linear thermal expansion coefficients of cell parameters a, b, and c are very similar, (1.11-1.67) × 10-5 K-1 in magnitude, and therefore, AgEu(SO4)2 expands almost isotropically. Upon heating in argon flow, AgEu(SO4)2 is stable up to 1053 K. The luminescence spectra in the region of ultranarrow 5D0-7F0 transition contain a single narrow and symmetric line at 579.5 nm that is evidence of good crystalline quality of AgEu(SO4)2 and uniform local environment of Eu3+ ions in the structure. Distribution of luminescence bands is determined by the environment of Eu3+ ions in the structure. Influence of Ag+ ions on the electron density distribution at Eu sites is detected.

9.
Mol Ther Nucleic Acids ; 9: 12-21, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246290

RESUMO

Novel nanoscale bioconjugates combining unique plasmonic photothermal properties of gold nanoparticles (AuNPs) with targeted delivery using cell-specific DNA aptamers have a tremendous potential for medical diagnostics and therapy of many cell-based diseases. In this study, we demonstrate the high anti-cancer activity of aptamer-conjugated, 37-nm spherical gold nanoparticles toward Ehrlich carcinoma in tumor-bearing mice after photothermal treatment. The synthetic anti-tumor aptamers bring the nanoparticles precisely to the desired cells and selectively eliminate cancer cells after the subsequent laser treatment. To prove tumor eradication, we used positron emission tomography (PET) utilizing radioactive glucose and computer tomography, followed by histological analysis of cancer tissue. Three injections of aptamer-conjugated AuNPs and 5 min of laser irradiations are enough to make the tumor undetectable by PET. Histological analysis proves PET results and shows lower damage of healthy tissue in addition to a higher treatment efficiency and selectivity of the gold nanoparticles functionalized with aptamers in comparison to control experiments using free unconjugated nanoparticles.

10.
J Phys Chem B ; 121(23): 5876-5881, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28564541

RESUMO

The employment of colloid quantum dots in a number of applications is limited by their instability under light irradiation. Additional methods of photostability enhancement of UV+visible-irradiated TGA-stabilized CdTe quantum dots are investigated. Photostability enhancement was observed via either addition of sodium sulphite in the role of chemical oxygen absorber or addition of 1% gelatin, or, finally, by additional stabilization by bovine serum albumine (BSA). The latter method is the most promising, since it not only enhances the quantum dots' photostability but also makes them more biocompatible and extends the possibilities of their biological applications.

11.
Dalton Trans ; 45(39): 15541-15551, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27711792

RESUMO

Triple molybdate NaCaLa(1-x-y)(MoO4)3:xEr3+,yYb3+ (x = y = 0, x = 0.05 and y = 0.45, x = 0.1 and y = 0.2, x = 0.2 and y = 0) phosphors were successfully synthesized for the first time by the microwave sol-gel method. Well-crystallized particles formed after heat treatment at 900 °C for 16 h showed a fine and homogeneous morphology with particle sizes of 2-3 µm. The structures were refined by the Rietveld method in the space group I41/a. The optical properties were examined comparatively using photoluminescence emission and Raman spectroscopy. Under excitation at 980 nm, the NaCaLa0.7(MoO4)3:0.1Er3+,0.2Yb3+ and NaCaLa0.5(MoO4)3:0.05Er3+,0.45Yb3+ particles exhibited a strong 525 nm emission band, a weaker 550 nm emission band in the green region, and three weak 655 nm, 490 nm and 410 nm emission bands in the red, blue and violet regions. The pump power dependence and Commission Internationale de L'Eclairage chromaticity of the upconversion emission intensity were evaluated in detail.

12.
Opt Express ; 24(10): 11145-50, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409936

RESUMO

Self-assembly of colloidal semiconductor quantum dots controlled solely by laser-induced interaction is demonstrated for the first time. Pairs of CdTe nanoparticles are formed under irradiation with nanosecond pulses at wavelengths 555 or 560 nm. Formation of pairs is justified by corresponding changes of absorption spectra. Conditions of the experiment are in excellent agreement with those predicted by the theory of laser-induced dipole-dipole interaction of QDs. The fraction of QDs assembled into pairs is up to 47%.

13.
Opt Lett ; 41(3): 618-21, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26907438

RESUMO

Tunable coherent radiation is generated in the vacuum ultraviolet down to 121 nm using random quasi-phase matching in strontium tetraborate, the shortest wavelength ever produced with a second-order nonlinear optical process in a solid-state material. Relevant properties of this radiation, the nonlinear process, and the nonlinear crystal are investigated.

14.
Phys Chem Chem Phys ; 17(29): 19278-87, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26138938

RESUMO

CaLa2-x(MoO4)4:Ho(3+)/Yb(3+) phosphors with the doping concentrations of Ho(3+) and Yb(3+) (x = Ho(3+) + Yb(3+), Ho(3+) = 0.05; Yb(3+) = 0.35, 0.40, 0.45 and 0.50) have been successfully synthesized by the microwave sol-gel method. The modulated and averaged crystal structures of CaLa2-x(MoO4)4:Ho(3+)/Yb(3+) molybdates have been found by the Rietveld method, and the upconversion photoluminescence properties have been investigated. The synthesized particles, being formed after the heat-treatment at 900 °C for 16 h, showed a highly crystallized state. Under the excitation at 980 nm, CaLa2-x(MoO4)4:Ho(3+)/Yb(3+) particles exhibited strong 545 and 655 nm emission bands in the green and red regions. When the Yb(3+) : Ho(3+) ratios are 9 : 1 and 10 : 1, the UC intensity of CaLa1.5(MoO4)4:Yb0.45/Ho0.05 and CaLa1.45(MoO4)4:Yb0.50/Ho0.05 particles is the highest for different bands. The CIE coordinates calculated for CaLa2-x(MoO4)4:Ho(3+)/Yb(3+) phosphors are related to the yellow color field. The Raman spectrum of undoped CaLa2(MoO4)4 has revealed about 13 narrow lines. The strongest band observed at 906 cm(-1) was assigned to the ν1 symmetric stretching vibration of MoO4 tetrahedra. The spectra of the samples doped with Ho and Yb, as obtained under the 514.5 nm excitation, were dominated by Ho(3+) luminescence over the wavenumber range of >700 cm(-1) preventing the recording of the Raman spectra.

15.
Opt Express ; 23(8): 10091-6, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25969050

RESUMO

We consider second harmonic generation (SHG) of ultrashort pulses in the case of strong phase- and group-velocity mismatch. Spectral fringes appear in the second harmonic related to two delayed replicas of the fundamental pulse in the time domain. The fringe separation can be used to evaluate the group-velocity and refractive index of nonlinear crystals at extreme wavelengths. Experimental results with femtosecond pulses in SrB(4)O(7) (SBO) are used to refine the Sellmeier equation describing the n(c) refractive index down to 160 nm, essential for the use of this unique nonlinear crystal for random quasi-phase-matching in the VUV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...