Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277214

RESUMO

In mid-2021, the SARS-CoV-2 Delta variant caused the third wave of the COVID-19 pandemic in several countries worldwide. The pivotal studies were aimed at studying changes in the efficiency of neutralizing antibodies to the spike protein. However, much less attention was paid to the T-cell response and the presentation of virus peptides by MHC-I molecules. In this study, we compared the features of the HLA-I genotype in symptomatic patients with COVID-19 in the first and third waves of the pandemic. As a result, we could identify the vanishing of carriers of the HLA-A*01:01 allele in the third wave and demonstrate the unique properties of this allele. Thus, HLA-A*01:01-binding immunoprevalent epitopes are mostly derived from ORF1ab. A set of epitopes from ORF1ab was tested, and their high immunogenicity was confirmed. Moreover, analysis of the results of single-cell phenotyping of T-cells in recovered patients showed that the predominant phenotype in HLA-A*01:01 carriers is central memory T-cells. The predominance of T-lymphocytes of this phenotype may contribute to forming long-term T-cell immunity in carriers of this allele. Our results can be the basis for highly effective vaccines based on ORF1ab peptides.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22273961

RESUMO

T cells play a pivotal role in reducing disease severity during SARS-CoV-2 infection and formation of long-term immune memory. We studied 50 COVID-19 convalescent patients and found that T cell response was induced more frequently and persisted longer than circulating antibodies. To identify epitopes that give rise to long-lived T cell memory, we performed ex vivo T cell expansion, MHC-tetramer cell-sorting, and high-throughput sequencing. We identified 756 clonotypes specific to nine known CD8+ T cell receptor (TCR) epitopes. Some epitopes were recognized by highly similar public clonotypes with restricted variable and joining segment usage. Receptors for other epitopes were extremely diverse, suggesting alternative modes of recognition. We also tracked persistence of epitope-specific response and individual clonotypes for a median of eight months after infection. The number of recognized epitopes per patient and quantity of epitope-specific clonotypes decreased over time, but the studied epitopes were characterized by uneven decline in the number of specific T cells. Epitopes with more clonally diverse TCR repertoires induced more pronounced and durable responses. In contrast, the abundance of specific clonotypes in peripheral circulation had no influence on their persistence. Our study demonstrates the durability of SARS-CoV-2-specific CD8+ memory, and offers important implications for vaccine design.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267518

RESUMO

The ongoing COVID-19 pandemic calls for more effective diagnostic tools, and T cell response assessment can serve as an independent indicator of prior COVID-19 exposure while also contributing to a more comprehensive characterization of SARS-CoV-2 immunity. In this study, we systematically assessed the immunogenicity of 118 epitopes with immune cells collected from multiple cohorts of vaccinated, convalescent, and healthy unexposed and SARS-CoV-2 exposed donors. We identified seventy-five immunogenic epitopes, 24 of which were immunodominant. We further confirmed HLA restriction for 49 epitopes, and described association with more than one HLA allele for 14 of these. After excluding two cross-reactive epitopes that generated a response in pre-pandemic samples, we were left with a 73-epitope set that offers excellent diagnostic specificity without losing sensitivity compared to full-length antigens, which evoked a robust cross-reactive response. We subsequently incorporated this set of epitopes into an in vitro diagnostic Corona-T-test which achieved a diagnostic accuracy of 95% in a clinical trial. When applied to a cohort of asymptomatic seronegative individuals with a history of prolonged SARS-CoV-2 exposure, this test revealed a lack of specific T cell response combined with strong cross-reactivity to full-length antigens, indicating that abortive infection had occurred in these individuals.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20107813

RESUMO

Understanding the hallmarks of the adaptive immune response to SARS-CoV-2 is critical for fighting the COVID-19 pandemic. We assessed the antibody and T-cell reactivity in COVID-19 convalescent patients and healthy donors sampled both prior to and during the pandemic. The numbers of SARS-CoV-2-specific T cells were increased in healthy donors examined during COVID-19. Combined with the absence of symptoms and humoral response across that group, this finding suggests that some individuals might be protected by T-cell cross-reactivity. In convalescent patients we observed public and diverse T-cell response to SARS-CoV-2 epitopes, revealing T-cell receptor motifs with germline-encoded features. Bulk CD4+ and CD8+ T-cell responses to Spike glycoprotein were mediated by groups of homologous T-cell receptors, some of them shared across multiple donors. Overall, our results demonstrate that T-cell response to SARS-CoV-2, including the identified set of specific T-cell receptors, can serve as a useful biomarker for surveying viral exposure and immunity.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-100545

RESUMO

COVID-19 is a global pandemic caused by the SARS-CoV-2 coronavirus. T cells play a key role in the adaptive antiviral immune response by killing infected cells and facilitating the selection of virus-specific antibodies. However neither the dynamics and cross-reactivity of the SARS-CoV-2-specific T cell response nor the diversity of resulting immune memory are well understood. In this study we use longitudinal high-throughput T cell receptor (TCR) sequencing to track changes in the T cell repertoire following two mild cases of COVID-19. In both donors we identified CD4+ and CD8+ T cell clones with transient clonal expansion after infection. The antigen specificity of CD8+ TCR sequences to SARS-CoV-2 epitopes was confirmed by both MHC tetramer binding and presence in large database of SARS-CoV-2 epitope-specific TCRs. We describe characteristic motifs in TCR sequences of COVID-19-reactive clones and show preferential occurence of these motifs in publicly available large dataset of repertoires from COVID-19 patients. We show that in both donors the majority of infection-reactive clonotypes acquire memory phenotypes. Certain T cell clones were detected in the memory fraction at the pre-infection timepoint, suggesting participation of pre-existing cross-reactive memory T cells in the immune response to SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...