Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Evol Biol ; 18(1): 32, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29544443

RESUMO

BACKGROUND: The CEA gene family is one of the most rapidly evolving gene families in the human genome. The founder gene of the family is thought to be an ancestor of the inhibitory immune checkpoint molecule CEACAM1. Comprehensive analyses of mammalian genomes showed that the CEA gene family is subject to tremendous gene family expansion and contraction events in different mammalian species. While in some species (e.g. rabbits) less than three CEACAM1 related genes exist, were in others (certain microbat species) up to 100 CEACAM1 paralogs identified. We have recently reported that the horse has also an extended CEA gene family. Since mechanisms of gene family expansion and diversification are not well understood we aimed to analyze the equine CEA gene family in detail. RESULTS: We found that the equine CEA gene family contains 17 functional CEACAM1-related genes. Nine of them were secreted molecules and eight CEACAMs contain transmembrane and cytoplasmic domain exons, the latter being in the focus of the present report. Only one (CEACAM41) gene has exons coding for activating signaling motifs all other CEACAM1 paralogs contain cytoplasmic exons similar to that of the inhibitory receptor CEACAM1. However, cloning of cDNAs showed that only one CEACAM1 paralog contain functional immunoreceptor tyrosine-based inhibitory motifs in its cytoplasmic tail. Three receptors have acquired a stop codon in the transmembrane domain and two have lost their inhibitory motifs due to alternative splicing events. In addition, alternative splicing eliminated the transmembrane exon sequence of the putative activating receptor, rendering it to a secreted molecule. Transfection of eukaryotic cells with FLAG-tagged alternatively spliced CEACAMs indicates that they can be expressed in vivo. Thus detection of CEACAM41 mRNA in activated PBMC suggests that CEACAM41 is secreted by lymphoid cells upon activation. CONCLUSIONS: The results of our study demonstrate that alternative splicing after gene duplication is a potent mechanism to accelerate functional diversification of the equine CEA gene family members. This potent mechanism has created novel CEACAM receptors with unique signaling capacities and secreted CEACAMs which potentially enables equine lymphoid cells to control distantly located immune cells.


Assuntos
Processamento Alternativo/genética , Antígenos CD/genética , Moléculas de Adesão Celular/genética , Duplicação Gênica , Variação Genética , Cavalos/genética , Homologia de Sequência do Ácido Nucleico , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antígenos CD/química , Sequência de Bases , Moléculas de Adesão Celular/química , Códon/genética , Éxons/genética , Humanos , Leucócitos Mononucleares/metabolismo , Domínios Proteicos , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos
2.
Reproduction ; 152(3): 171-84, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27280409

RESUMO

Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family that are secreted by trophoblast cells. PSGs may modulate immune, angiogenic and platelet responses during pregnancy. Until now, PSGs are only found in species that have a highly invasive (hemochorial) placentation including humans, mice and rats. Surprisingly, analyzing the CEACAM gene family of the horse, which has a non-invasive epitheliochorial placenta, with the exception of the transient endometrial cups, we identified equine CEACAM family members that seem to be related to PSGs of rodents and primates. We identified seven genes that encode secreted PSG-like CEACAMs Phylogenetic analyses indicate that they evolved independently from an equine CEACAM1-like ancestor rather than from a common PSG-like ancestor with rodents and primates. Significantly, expression of PSG-like genes (CEACAM44, CEACAM48, CEACAM49 and CEACAM55) was found in non-invasive as well as invasive trophoblast cells such as purified chorionic girdle cells and endometrial cup cells. Chorionic girdle cells are highly invasive trophoblast cells that invade the endometrium of the mare where they form endometrial cups and are in close contact with maternal immune cells. Therefore, the microenvironment of invasive equine trophoblast cells has striking similarities to the microenvironment of trophoblast cells in hemochorial placentas, suggesting that equine PSG-like CEACAMs and rodent and primate PSGs have undergone convergent evolution. This is supported by our finding that equine PSG-like CEACAM49 exhibits similar activity to certain rodent and human PSGs in a functional assay of platelet-fibrinogen binding. Our results have implications for understanding the evolution of PSGs and their functions in maternal-fetal interactions.


Assuntos
Evolução Biológica , Antígeno Carcinoembrionário/metabolismo , Glicoproteínas/metabolismo , Placenta/metabolismo , Proteínas da Gravidez/metabolismo , Trofoblastos/metabolismo , Animais , Feminino , Glicoproteínas/classificação , Cavalos , Humanos , Filogenia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...