Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 13763, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792680

RESUMO

Mutations in the SNX14 gene cause spinocerebellar ataxia, autosomal recessive 20 (SCAR20) in both humans and dogs. Studies implicating the phenotypic consequences of SNX14 mutations to be consequences of subcellular disruption to autophagy and lipid metabolism have been limited to in vitro investigation of patient-derived dermal fibroblasts, laboratory engineered cell lines and developmental analysis of zebrafish morphants. SNX14 homologues Snz (Drosophila) and Mdm1 (yeast) have also been conducted, demonstrated an important biochemical role during lipid biogenesis. In this study we report the effect of loss of SNX14 in mice, which resulted in embryonic lethality around mid-gestation due to placental pathology that involves severe disruption to syncytiotrophoblast cell differentiation. In contrast to other vertebrates, zebrafish carrying a homozygous, maternal zygotic snx14 genetic loss-of-function mutation were both viable and anatomically normal. Whilst no obvious behavioural effects were observed, elevated levels of neutral lipids and phospholipids resemble previously reported effects on lipid homeostasis in other species. The biochemical role of SNX14 therefore appears largely conserved through evolution while the consequences of loss of function varies between species. Mouse and zebrafish models therefore provide valuable insights into the functional importance of SNX14 with distinct opportunities for investigating its cellular and metabolic function in vivo.


Assuntos
Viabilidade Fetal/genética , Metabolismo dos Lipídeos/genética , Placenta/anormalidades , Nexinas de Classificação/genética , Ataxias Espinocerebelares/genética , Animais , Animais Geneticamente Modificados , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fenótipo , Fosfolipídeos/sangue , Gravidez , Trofoblastos/citologia , Peixe-Zebra
2.
J Clin Endocrinol Metab ; 103(3): 917-925, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29342293

RESUMO

Context: Small for gestational age (SGA) can be the result of fetal growth restriction, which is associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood. Objective: The aim of the current study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more copy number variations (CNVs) and disturbed methylation and sequence variants may be present in genes associated with fetal growth. Design: A prospective cohort study of subjects with a low birth weight for gestational age. Setting: The study was conducted at an academic pediatric research institute. Patients: A total of 21 SGA newborns with a mean birth weight below the first centile and a control cohort of 24 appropriate-for-gestational-age newborns were studied. Interventions: Array comparative genomic hybridization, genome-wide methylation studies, and exome sequencing were performed. Main Outcome Measures: The numbers of CNVs, methylation disturbances, and sequence variants. Results: The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern, and one sequence variant explaining SGA. Additional methylation disturbances and sequence variants were present in 20 patients. In 19 patients, multiple abnormalities were found. Conclusion: Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We concluded that CNVs, methylation disturbances, and sequence variants all contribute to prenatal growth failure. These genetic workups can be an effective diagnostic approach in SGA newborns.


Assuntos
Peso ao Nascer/genética , Retardo do Crescimento Fetal/genética , Recém-Nascido Pequeno para a Idade Gestacional , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Metilação de DNA , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...