Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biometeorol ; 68(5): 891-898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374294

RESUMO

Biological invasions pose significant threats to biodiversity, with invasive species spread often facilitated by human activities. Consequently, this research utilized ecological niche modeling (ENM) to overcome this limitation and map the potential suitability of Microtheca ochroloma Stål, 1860 and Microtheca semilaevis Stål, 1860, which have been evaluated as potential insect pests in the Americas, zones for four genera of Brassicaceae, which include globally cultivated species such as Sinapis L., Raphanus L., Eruca Mill., and Brassica L. We utilized multiple methods to forecast the ecological habitat of Microtheca Stål, 1860 species based on distribution data and various environmental indicators. Our models, exhibiting high-performance metrics (TSS ranging from 0.84 to 0.96), revealed extensive environmental suitability for these species across the Americas, including previously unreported regions. The predicted zones overlapped significantly with areas where Brassicaceae crops were grown. Contrary to some previous assertions, our findings suggest that while these Microtheca species are recognized pests on these crops, their consistent widespread damage may be overstated. Nevertheless, their invasive potential could have broad ecological impacts, including biodiversity loss. Our research emphasizes the need for focused sampling in potential distribution zones and underlines the value of integrating ENM in predicting and managing invasive species spread.


Assuntos
Brassicaceae , Besouros , Ecossistema , Espécies Introduzidas , Animais , América , Modelos Teóricos
2.
Neotrop Entomol ; 52(3): 512-520, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36884146

RESUMO

Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) is an invasive pest that is popularly known as chilli thrips. This insect pest has a wide range of hosts distributed across 72 plant families, causing damage to numerous crops of great economic importance. In the Americas, it is present in the USA, Mexico, Suriname, Venezuela, Colombia, and some Caribbean Islands. Knowing the regions which have environmentally suitable conditions for the survival of this pest is important for phytosanitary monitoring and inspection. Thus, our objective was to forecast the distribution potential of S. dorsalis with a focus on the Americas. Models were produced to design this distribution, in which the environmental variables used were made available in Wordclim version 2.1. The algorithms used for the modeling were the generalized additive model (GAM), generalized linear model (GLM), maximum entropy (MAXENT), random forest (RF), and Bioclim, in addition to the ensemble, which consisted of the grouping of the algorithms used. The metrics used to evaluate the models were area over the curve (AUC), true ability statistics (TSS), and Sorensen score. All models had satisfactory results (> 0.8) for all metrics used. In North America, the model showed favorable regions on the west coast of the USA and east coast near New York. In South America, the potential distribution of the pest is significant, encompassing regions in all countries. It is concluded that S. dorsalis has suitable areas for the occurrence in the three American subcontinents and, in particular, a large part of South America.


Assuntos
Tisanópteros , Animais , Insetos , América do Sul , Produtos Agrícolas , Ecossistema
3.
Biol Rev Camb Philos Soc ; 97(5): 1930-1947, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35808863

RESUMO

Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the ß-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.


Assuntos
Biodiversidade , Florestas , Animais , Aves , Ecossistema , Humanos , Plantas , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...