Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 94(2): e20200509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35946643

RESUMO

An experiment was conducted to evaluate the fatty acid profile of subcutaneous fat from barrowS of same genetic lineage supplemented with organic chromium and selenium initiated in different weight ranges in the finishing phase using 24 carcasses. Three different diets were used that represent the time when supplementation starts: control - without the inclusion of organic Cr and Se; CrSe70 - control with 500 g ton-1 of organic Cr and Se of 70 to 130 kg in body weight; and CrSe100 - control with inclusion of 500 g ton-1 of organic Cr and Se from 100 kg to 130 kg body weight. Performance, carcass characteristics, and lipid profile were evaluated. The data were submitted to analysis of variance, and with significant differences (p<0.05), the means were compared using the Tukey test. From 70 to 100 kg, control and CrSe70 animals consumed less feed than CrSe100. From 100 kg body weight, it reduced the C20:5n3 and C24:1n9 acids and increased the activity of the Δ-6 desaturase, elongase, Δ-5 desaturase enzymes in the supplemented animals. The moment when supplementation starts of organic chromium and selenium does not improve the performance and carcass characteristics, does not change the fatty acid profile, and does not improve the quality of the fat.


Assuntos
Selênio , Ração Animal/análise , Animais , Composição Corporal , Peso Corporal , Cromo/farmacologia , Dieta , Ácidos Graxos Dessaturases/farmacologia , Ácidos Graxos/farmacologia , Carne , Selênio/farmacologia , Suínos
2.
Transl Anim Sci ; 5(1): txab016, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34841201

RESUMO

Piglets are susceptible to hypothermia early after birth, which is a major predisposing factor for preweaning mortality (PWM). Drying and warming piglets at birth has been shown to reduce early postnatal temperature decline. This study evaluated the effect of drying and warming piglets at birth on PWM and weaning weight (WW) under commercial conditions. A completely randomized design was used with 802 sows/litters (10,327 piglets); sows/litters were randomly allotted at start of farrowing to one of two Intervention Treatments (applied at birth): Control (no drying or warming); Drying+Warming (dried with a cellulose-based desiccant and placed in a box under a heat lamp for 30 min). Piglets were weighed at birth and weaning; PWM was recorded. Rectal temperature was measured at 0 and 30 min after birth on all piglets in a subsample of 10% of litters. The effect of farrowing pen temperature (FPT) on WW and PWM was evaluated by comparing litters born under COOL (<25°C) to those born under WARM (≥25°C) FPT. The effect of birth weight on WW and PWM was evaluated by comparing three birth weight categories (BWC; Light: <1.0 kg, Medium: 1.0 to 1.5 kg, or Heavy: >1.5 kg). PROC GLIMMIX and MIXED of SAS were used to analyze mortality and other data, respectively. Litter was the experimental unit; piglet was a subsample of litter. The model included fixed effects of Intervention Treatment, and FPT or BWC as appropriate, the interaction, and the random effects of litter. Piglet rectal temperature at 30 min after birth was greater (P ≤ 0.05) for the Drying+Warming than the Control treatment (+2.33°C). Overall, there was no effect (P > 0.05) of Intervention Treatment on PWM or WW, and there were no Intervention Treatment by BWC interactions (P > 0.05) for these measurements. There was an Intervention Treatment by FPT interaction (P ≤ 0.05) for PWM. Drying and warming piglets reduced (P ≤ 0.05) PWM under COOL (by 2.4 percentage units) but not WARM FPT. In addition, WW were lower (P ≤ 0.05) under WARM (by 0.79 kg) than COOL FPT; however, there was no interaction (P > 0.05) with Intervention Treatment. In conclusion, this study suggests that drying and warming piglets at birth increases rectal temperature and may reduce PWM under cooler conditions, which are typically experienced in temperate climates during the majority of the year.

3.
An Acad Bras Cienc ; 93(3): e20190619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34406282

RESUMO

This study was conducted to evaluate the period of chromium yeast supplementation on lipid profile of backfat and Longissimus lumborum muscle of barrows. It was evaluated carcass samples from forty barrows, genetically similar. Pigs diets were supplemented with 0.4 mg kg-1 of chromium yeast in four periods (0, 38, 62 and 94 days before slaughter). The experimental design was completely randomized with four treatments, ten replicates, and each experimental unit consisting of one animal. Lipid profiles of backfat and Longissimus lumborum muscle were analyzed by gas chromatography. The increase in the period of chromium yeast use had a quadratic effect (P<0.05) for stearic and oleic fatty acids, and total saturated, monounsaturated and unsaturated fatty acids in backfat. DH-γ-linolenic and arachidonic fatty acids reduced when the period of chromium yeast use increased. In the meat, there was a quadratic effect (P<0.05) only in the γ-linoleic fatty acid. The use of chromium yeast for different periods influences the lipid profile of the backfat and the Longissimus lumborum muscle, with less effect in the meat.


Assuntos
Ácidos Graxos , Saccharomyces cerevisiae , Ração Animal/análise , Animais , Cromo , Suplementos Nutricionais , Lipídeos , Carne/análise , Suínos
4.
Transl Anim Sci ; 5(3): txab095, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34278236

RESUMO

Neonatal piglets can experience both a decrease in body temperature and hypoxia, increasing risks for pre-weaning mortality. This research evaluated the effects of drying and providing supplemental oxygen to newborn piglets on rectal temperature (RT) over the first 24 h after birth. The study used a CRD with three Intervention Treatments (IT; applied at birth): Control (no intervention), Drying (dried using a desiccant), Oxygen [dried using a desiccant and placed in a chamber (at 40% oxygen concentration) for 20 min]. A total of 42 litters (485 piglets) were randomly allotted to treatments at the start of farrowing. At birth, each piglet was given a numbered ear tag, weighed, and the treatment was applied; RT was measured at 0, 20, 30, 45, 60, 120, and 1440 min after birth. Blood was collected from one piglet from each birth weight quartile within each litter at 24 h after birth to measure plasma immunocrit concentration. There was no effect (P > 0.05) of IT on piglet RT at 0 or 1440 min after birth. Between 20 and 60 min after birth, piglet RT was lower (P ≤ 0.05) for the Control than the Drying treatment, with the Oxygen treatment being intermediate and different (P ≤ 0.05) from the other two IT. The effect of piglet birth weight on responses to IT were evaluated by classifying piglets into Birth Weight Categories (BWC): Light (<1.0 kg), Medium (1.0 to 1.5 kg), or Heavy (>1.5 kg). There were IT by BWC interactions (P ≤ 0.05) for piglet RT at all measurement times between 20 and 120 min after birth. Relative to the Control, the effects of the Drying and Oxygen treatments on RT were greater (P ≤ 0.05) for Light than heavier piglets. Plasma immunocrit concentrations tended (P = 0.07) to be greater for piglets on the Control treatment compared to the other two IT and were lower (P ≤ 0.05) for Light than Heavy piglets, with Medium piglets being intermediate and different (P ≤ 0.05) to the other BWC. In conclusion, drying piglets at birth reduced the extent and duration of RT decline in piglets in the early postnatal period compared to undried piglets, especially for those of low birth weight. However, the combination of drying and placing piglets in an oxygen-rich environment provided no additional benefit over drying alone.

5.
Transl Anim Sci ; 5(3): txab060, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34316538

RESUMO

Piglets experience a decline in body temperature immediately after birth, and both drying and warming piglets at birth reduce this. However, these interventions may be less effective at higher farrowing room temperatures. This study was carried out at a commercial facility to compare the effect of drying and/or warming piglets at birth on postnatal rectal temperature (RT) under relatively warm farrowing room temperatures (26.6 ± 2.09 °C). Forty-five sows/litters were used in a completely randomized design to compare three Intervention Treatments (applied at birth): Control (no treatment); Warming (piglets placed in a plastic box under a heat lamp for 30 min); and Drying+Warming (piglets dried with desiccant and warmed as above). Temperatures in the warming boxes over the study period averaged 37.7 ± 2.75 °C. At birth, piglets were weighed; RT temperature was measured at 0, 10, 20, 30, 45, 60, 120, and 1,440 min after birth. Blood samples were collected at 24 h after birth from a subsample of one piglet from each birth weight quartile within each litter to measure plasma immunocrit concentration. Data were analyzed using PROC MIXED of SAS with litter as the experimental unit, and piglet as a subsample of litter. The model for analysis of piglet rectal temperature included fixed effects of Intervention Treatment, measurement time (repeated measure), the interaction, and the random effect of sow. Compared with the Control, piglet RT were higher (P ≤ 0.05) for the Warming treatment between 10 and 60 min, and higher (P ≤ 0.05) for the Drying+Warming treatment between 10 and 120 min after birth. Rectal temperatures were higher (P ≤ 0.05) for the Drying+Warming than the Warming treatment between 20 and 120 min. Responses to drying and/or warming were greater for low-birth-weight piglets (<1.0 kg) than heavier littermates, but were generally less than observed in previous experiments with similar treatments carried out under cooler temperatures. Piglet immunocrit values were lower (P ≤ 0.05) for the Drying+Warming treatment compared to the other Intervention Treatments, which were similar (P > 0.05). Immunocrit values tended (P = 0.10) to be lower for light (<1.0 kg) compared with heavier birth weight piglets. In conclusion, drying and warming piglets at birth was more effective for reducing piglet RT decline after birth than warming alone, though the effect was less than observed in previous studies carried out under cooler farrowing room temperatures.

6.
Transl Anim Sci ; 4(4): txaa183, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33241187

RESUMO

Piglets are born wet, and evaporation of that moisture decreases body temperature, increasing the risk of mortality. The objective of this study was to compare the effect of two commercially applicable methods for drying piglets at birth on piglet rectal temperature over 24 h after birth. The study was carried out in standard commercial farrowing facilities with 52 litters, using a completely randomized design with three Drying Treatments: Control (not dried); Desiccant (dried at birth using a cellulose-based desiccant); Paper Towel (dried at birth using paper towels). Litters were randomly allotted to treatments at the birth of the first piglet. At birth, piglets were individually identified, and the treatment was applied. Rectal temperature was measured at 0, 10, 20, 30, 45, 60, 120, and 1,440 min (24 h) after birth. Data were analyzed using a repeated measures model with PROC MIXED of SAS, with litter as the experimental unit and piglet a subsample of the litter. The model included the fixed effects of treatment and time (as a repeated measure), and the interaction. There was no effect (P > 0.05) of treatment on temperature at birth, or 10 or 1,440 min after birth. Piglet temperatures between 20 and 120 min after birth were similar (P > 0.05) for the Desiccant and Paper Towel treatments, but were greater (P ≤ 0.05) than the Control. The effect of birth weight on the response to Drying Treatment was evaluated by dividing the data into Light (<1.0 kg), Medium (1.0 to 1.5 kg), or Heavy (>1.5 kg) piglet Birth Weight Categories. Piglet rectal temperature data at each measurement time were analyzed using a model that included the fixed effects of Birth Weight Category, Drying Treatment, and the interaction. Temperatures of Light piglets were lower (P ≤ 0.05) than those of Heavy piglets between 20 and 120 min after birth, with Medium piglets being intermediate and generally different to the other two weight categories at these times. The difference in temperature between Light as compared with Medium or Heavy piglets was greater for the Control than the other two Drying Treatments at 60 min after birth. These results suggest that drying piglets at birth is an effective method to reduce rectal temperature decline in the early postnatal period, especially for low birth weight piglets.

7.
Transl Anim Sci ; 4(4): txaa184, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33241188

RESUMO

Piglets experience a rapid decrease in body temperature immediately after birth, increasing the risk of mortality. The objective of this study was to determine the effect of drying and/or warming piglets at birth on rectal temperature over the first 24 h after birth. The study was carried out at a commercial sow facility using a completely randomized design with four treatments (applied to piglets at birth): Control (no drying or warming), Desiccant (dried using a desiccant), Warming Box (placed in a box under a heat lamp for 30 min), and Desiccant + Warming Box (both dried and warmed as above). Farrowing pens had one heat lamp, temperatures under which were similar to the warming box (35 °C). A total of 68 litters (866 piglets) were randomly allotted to a treatment at the birth of the first piglet. At birth, each piglet was identified with a numbered ear tag and weighed; rectal temperature was measured at 0, 10, 20, 30, 45, 60, 120, and 1,440 min after birth. Data were analyzed using a repeated-measures model using PROC MIXED of SAS. Litter was the experimental unit, piglet was a subsample of the litter; and the model included the fixed effects of treatment, time (the repeated measure), and the interaction. Rectal temperatures at birth and 1,440 min after birth were similar (P > 0.05) for all treatments. At all times between 10 and 120 min after birth, Control piglets had lower (P ≤ 0.05) temperatures than the other three treatments. The Desiccant and Warming Box treatments had similar (P > 0.05) temperatures at most measurement times, but the Desiccant + Warming Box treatment had the highest (P ≤ 0.05) rectal temperatures at most times between 10 and 60 min. In addition, for all treatments, light (<1.0 kg) birth weight piglets had lower (P ≤ 0.05) temperatures than medium (1.0-1.5 kg) or heavy (>1.5 kg) piglets at all times between 10 and 120 min. In addition, at these measurement times, the deviation in temperature between the Control and the other three treatments was greater for light than medium or heavy piglets. In conclusion, both drying and warming piglets at birth significantly increased rectal temperatures between 10 and 120 min after birth, with the combination of the two interventions having the greatest effect, especially for low birth weight piglets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...