Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Chem Res Toxicol ; 36(7): 1129-1139, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37294641

RESUMO

Drug-induced liver injury (DILI), believed to be a multifactorial toxicity, has been a leading cause of attrition of small molecules during discovery, clinical development, and postmarketing. Identification of DILI risk early reduces the costs and cycle times associated with drug development. In recent years, several groups have reported predictive models that use physicochemical properties or in vitro and in vivo assay endpoints; however, these approaches have not accounted for liver-expressed proteins and drug molecules. To address this gap, we have developed an integrated artificial intelligence/machine learning (AI/ML) model to predict DILI severity for small molecules using a combination of physicochemical properties and off-target interactions predicted in silico. We compiled a data set of 603 diverse compounds from public databases. Among them, 164 were categorized as Most DILI (M-DILI), 245 as Less DILI (L-DILI), and 194 as No DILI (N-DILI) by the FDA. Six machine learning methods were used to create a consensus model for predicting the DILI potential. These methods include k-nearest neighbor (k-NN), support vector machine (SVM), random forest (RF), Naïve Bayes (NB), artificial neural network (ANN), logistic regression (LR), weighted average ensemble learning (WA) and penalized logistic regression (PLR). Among the analyzed ML methods, SVM, RF, LR, WA, and PLR identified M-DILI and N-DILI compounds, achieving a receiver operating characteristic area under the curve of 0.88, sensitivity of 0.73, and specificity of 0.9. Approximately 43 off-targets, along with physicochemical properties (fsp3, log S, basicity, reactive functional groups, and predicted metabolites), were identified as significant factors in distinguishing between M-DILI and N-DILI compounds. The key off-targets that we identified include: PTGS1, PTGS2, SLC22A12, PPARγ, RXRA, CYP2C9, AKR1C3, MGLL, RET, AR, and ABCC4. The present AI/ML computational approach therefore demonstrates that the integration of physicochemical properties and predicted on- and off-target biological interactions can significantly improve DILI predictivity compared to chemical properties alone.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Transportadores de Ânions Orgânicos , Humanos , Inteligência Artificial , Teorema de Bayes , Aprendizado de Máquina , Bases de Dados Factuais , Proteínas de Transporte de Cátions Orgânicos
2.
Acta Pharm Sin B ; 11(12): 3857-3868, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024312

RESUMO

Drug-induced liver injury (DILI) is a leading reason for preclinical safety attrition and post-market drug withdrawals. Drug-induced mitochondrial toxicity has been shown to play an essential role in various forms of DILI, especially in idiosyncratic liver injury. This study examined liver injury reports submitted to the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) for drugs associated with hepatotoxicity via mitochondrial mechanisms compared with non-mitochondrial mechanisms of toxicity. The frequency of hepatotoxicity was determined at a group level and individual drug level. A reporting odds ratio (ROR) was calculated as the measure of effect. Between the two DILI groups, reports for DILI involving mitochondrial mechanisms of toxicity had a 1.43 (95% CI 1.42-1.45; P < 0.0001) times higher odds compared to drugs associated with non-mitochondrial mechanisms of toxicity. Antineoplastic, antiviral, analgesic, antibiotic, and antimycobacterial drugs were the top five drug classes with the highest ROR values. Although the top 20 drugs with the highest ROR values included drugs with both mitochondrial and non-mitochondrial injury mechanisms, the top four drugs (ROR values > 18: benzbromarone, troglitazone, isoniazid, rifampin) were associated with mitochondrial mechanisms of toxicity. The major demographic influence for DILI risk was also examined. There was a higher mean patient age among reports for drugs that were associated with mitochondrial mechanisms of toxicity [56.1 ± 18.33 (SD)] compared to non-mitochondrial mechanisms [48 ± 19.53 (SD)] (P < 0.0001), suggesting that age may play a role in susceptibility to DILI via mitochondrial mechanisms of toxicity. Univariate logistic regression analysis showed that reports of liver injury were 2.2 (odds ratio: 2.2, 95% CI 2.12-2.26) times more likely to be associated with older patient age, as compared with reports involving patients less than 65 years of age. Compared to males, female patients were 37% less likely (odds ratio: 0.63, 95% CI 0.61-0.64) to be subjects of liver injury reports for drugs associated with mitochondrial toxicity mechanisms. Given the higher proportion of severe liver injury reports among drugs associated with mitochondrial mechanisms of toxicity, it is essential to understand if a drug causes mitochondrial toxicity during preclinical drug development when drug design alternatives, more clinically relevant animal models, and better clinical biomarkers may provide a better translation of drug-induced mitochondrial toxicity risk assessment from animals to humans. Our findings from this study align with mitochondrial mechanisms of toxicity being an important cause of DILI, and this should be further investigated in real-world studies with robust designs.

3.
Arch Toxicol ; 95(1): 149-168, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816093

RESUMO

Preventing clinical drug-induced liver injury (DILI) remains a major challenge, because DILI develops via multifactorial mechanisms. Immune and inflammatory reactions are considered important mechanisms of DILI; however, biomarkers from in vitro systems using immune cells have not been comprehensively studied. The aims of this study were (1) to identify promising biomarker genes for predicting DILI in an in vitro coculture model of peripheral blood mononuclear cells (PBMCs) with a human liver cell line, and (2) to evaluate these genes as predictors of DILI using a panel of drugs with different clinical DILI risk. Transcriptome-wide analysis of PBMCs cocultured with HepG2 or differentiated HepaRG cells that were treated with several drugs revealed an appropriate separation of DILI-positive and DILI-negative drugs, from which 12 putative biomarker genes were selected. To evaluate the predictive performance of these genes, PBMCs cocultured with HepG2 cells were exposed to 77 different drugs, and gene expression levels in PBMCs were determined. The MET proto-oncogene receptor tyrosine kinase (MET) showed the highest area under the receiver-operating characteristic curve (AUC) value of 0.81 among the 12 genes with a high sensitivity/specificity (85/66%). However, a stepwise logistic regression model using the 12 identified genes showed the highest AUC value of 0.94 with a high sensitivity/specificity (93/86%). Taken together, we established a coculture system using PBMCs and HepG2 cells and selected biomarkers that can predict DILI risk. The established model would be useful in detecting the DILI potential of compounds, in particular those that involve an immune mechanism.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Técnicas de Cocultura , Perfilação da Expressão Gênica , Marcadores Genéticos , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proto-Oncogene Mas , Medição de Risco
4.
Chem Res Toxicol ; 33(7): 1780-1790, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32338883

RESUMO

Drug-induced organ injury is a major reason for drug candidate attrition in preclinical and clinical drug development. The liver, kidneys, and heart have been recognized as the most common organ systems affected in safety-related attrition or the subject of black box warnings and postmarket drug withdrawals. In silico physicochemical property calculations and in vitro assays have been utilized separately in the early stages of the drug discovery and development process to predict drug safety. In this study, we combined physicochemical properties and in vitro cytotoxicity assays including mitochondrial dysfunction to build organ-specific univariate and multivariable logistic regression models to achieve odds ratios for the prediction of clinical hepatotoxicity, nephrotoxicity, and cardiotoxicity using 215 marketed drugs. The multivariable hepatotoxic predictive model showed an odds ratio of 6.2 (95% confidence interval (CI) 1.7-22.8) or 7.5 (95% CI 3.2-17.8) for mitochondrial inhibition or drug plasma Cmax >1 µM for drugs associated with liver injury, respectively. The multivariable nephrotoxicity predictive model showed an odds ratio of 5.8 (95% CI 2.0-16.9), 6.4 (95% CI 1.1-39.3), or 15.9 (95% CI 2.8-89.0) for drug plasma Cmax >1 µM, mitochondrial inhibition, or hydrogen-bond-acceptor atoms >7 for drugs associated with kidney injury, respectively. Conversely, drugs with a total polar surface area ≥75 Å were 79% (odds ratio 0.21, 95% CI 0.061-0.74) less likely to be associated with kidney injury. Drugs belonging to the extended clearance classification system (ECCS) class 4, where renal secretion is the primary clearance mechanism (low permeability drugs that are bases/neutrals), were 4 (95% CI 1.8-9.5) times more likely to to be associated with kidney injury with this data set. Alternatively, ECCS class 2 drugs, where hepatic metabolism is the primary clearance (high permeability drugs that are bases/neutrals) were 77% less likely (odds ratio 0.23 95% CI 0.095-0.54) to to be associated with kidney injury. A cardiotoxicity model was poorly defined using any of these drug physicochemical attributes. Combining in silico physicochemical properties descriptors along with in vitro toxicity assays can be used to build predictive toxicity models to select small molecule therapeutics with less potential to cause liver and kidney organ toxicity.


Assuntos
Bioensaio , Doença Hepática Induzida por Substâncias e Drogas , Descoberta de Drogas , Nefropatias/induzido quimicamente , Modelos Biológicos , Preparações Farmacêuticas/química , Coração/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Modelos Logísticos , Mitocôndrias/efeitos dos fármacos
5.
Chem Res Toxicol ; 33(1): 223-238, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31532188

RESUMO

The hepatic risk matrix (HRM) was developed and used to differentiate lead clinical and back-up drug candidates against competitor/marketed drugs within the same pharmaceutical class for their potential to cause human drug-induced liver injury (DILI). The hybrid HRM scoring system blends physicochemical properties (Rule of Two Model: dose and lipophilicity or Partition Model: dose, ionization state, lipophilicity, and fractional carbon bond saturation) with common toxicity mechanisms (cytotoxicity, mitochondrial dysfunction, and bile salt export pump (BSEP) inhibition) that promote DILI. HRM scores are based on bracketed safety margins (<1, 1-10, 10-100, and >100× clinical Cmax,total). On the basis of well-established clinical safety experience of marketed/withdrawn drug candidates, the background analysis consists of 200 drugs from the Liver Toxicity Knowledge Base annotated as Most-DILI- (79), Less-DILI- (56), No-DILI- (47), and Ambiguous-DILI-concern (18) drugs. Scores were generated for over 21 internal and 7 external drug candidates discontinued for unacceptable incidence/magnitude of liver transaminase elevations during clinical trials or withdrawn for liver injury severity. Both hybrid scoring systems identified 70-80% Most-DILI-concern drugs, but more importantly, stratified successful/unsuccessful drug candidates for liver safety (incidence/severity of transaminase elevations and approved drug labels). Incorporating other mechanisms (reactive metabolite and cytotoxic metabolite generation and hepatic efflux transport inhibition, other than BSEP) to the HRM had minimal beneficial impact in DILI prediction/stratification. As is, the hybrid scoring system was positioned for portfolio assessments to contrast DILI risk potential of small molecule drug candidates in early clinical development. This stratified approach for DILI prediction aided decisions regarding drug candidate progression, follow-up mechanistic work, back-up selection, clinical dose selection, and due diligence assessments in favor of compounds with less implied clinical hepatotoxicity risk.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Sobrevivência Celular , Desenvolvimento de Medicamentos/métodos , Células Hep G2 , Humanos , Mitocôndrias Hepáticas/efeitos dos fármacos , Ratos , Medição de Risco/métodos
6.
Chem Res Toxicol ; 33(1): 258-270, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31820940

RESUMO

The importance of adsorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis is expected to grow substantially due to recent failures in detecting severe toxicity issues of new chemical entities during preclinical/clinical development. Traditionally, safety risk assessment studies for humans have been conducted in animals during advanced preclinical or clinical phase of drug development. However, potential drug toxicity in humans now needs to be detected in the drug discovery process as soon as possible without reliance on animal studies. The "omics", such as genomics, proteomics, and metabolomics, have recently entered pharmaceutical research in both drug discovery and drug development, but to the best of our knowledge, no applications in high-throughput safety risk assessment have been attempted so far. This paper reports an innovative method to anticipate adverse drug effects in an early discovery phase based on lipid fingerprints using human three-dimensional microtissues. The risk of clinical hepatotoxicity potential was evaluated for a data set of 22 drugs belonging to five different therapeutic chemical classes and with various drug-induced liver injury effect. The treatment of microtissues with repeated doses of each drug allowed collecting lipid fingerprints for five time points (2, 4, 7, 9, and 11 days), and multivariate statistical analysis was applied to search for correlations with the hepatotoxic effect. The method allowed clustering of the drugs based on their hepatotoxic effect, and the observed lipid impairments for a number of drugs was confirmed by literature sources. Compared to traditional screening methods, here multiple interconnected variables (lipids) are measured simultaneously, providing a snapshot of the cellular status from the lipid perspective at a molecular level. Applied here to hepatotoxicity, the proposed workflow can be applied to several tissues, being tridimensional microtissues from various origins.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Lipidômica , Humanos , Fígado , Modelos Estatísticos , Medição de Risco/métodos , Esferoides Celulares , Fluxo de Trabalho
7.
Pharmacol Res Perspect ; 7(6): e00523, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31624633

RESUMO

Many compounds that appear promising in preclinical species, fail in human clinical trials due to safety concerns. The FDA has strongly encouraged the application of modeling in drug development to improve product safety. This study illustrates how DILIsym, a computational representation of liver injury, was able to reproduce species differences in liver toxicity due to PF-04895162 (ICA-105665). PF-04895162, a drug in development for the treatment of epilepsy, was terminated after transaminase elevations were observed in healthy volunteers (NCT01691274). Liver safety concerns had not been raised in preclinical safety studies. DILIsym, which integrates in vitro data on mechanisms of hepatotoxicity with predicted in vivo liver exposure, reproduced clinical hepatotoxicity and the absence of hepatotoxicity observed in the rat. Simulated differences were multifactorial. Simulated liver exposure was greater in humans than rats. The simulated human hepatotoxicity was demonstrated to be due to the interaction between mitochondrial toxicity and bile acid transporter inhibition; elimination of either mechanism from the simulations abrogated injury. The bile acid contribution occurred despite the fact that the IC50 for bile salt export pump (BSEP) inhibition by PF-04895162 was higher (311 µmol/L) than that has been generally thought to contribute to hepatotoxicity. Modeling even higher PF-04895162 liver exposures than were measured in the rat safety studies aggravated mitochondrial toxicity but did not result in rat hepatotoxicity due to insufficient accumulation of cytotoxic bile acid species. This investigative study highlights the potential for combined in vitro and computational screening methods to identify latent hepatotoxic risks and paves the way for similar and prospective studies.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Anticonvulsivantes/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Biológicos , Quinazolinas/toxicidade , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Adolescente , Adulto , Animais , Anticonvulsivantes/administração & dosagem , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Simulação por Computador , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/normas , Epilepsia/tratamento farmacológico , Células HEK293 , Voluntários Saudáveis , Hepatócitos , Humanos , Concentração Inibidora 50 , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Quinazolinas/administração & dosagem , Ratos , Especificidade da Espécie , Ácido Taurocólico/metabolismo , Adulto Jovem
8.
J Appl Toxicol ; 39(9): 1348-1361, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31231834

RESUMO

CJ-12,918, a 5-lipoxygenase (5-LO) inhibitor, caused cataracts during a 1-month safety assessment studies in rats whereas the structurally similar ZD-2138 was without effect. For CJ-12,918 analogs, blocking different sites of metabolic liability reduced (CJ-13,454) and eliminated (CJ-13,610) cataract formation in both rats and dogs. Using this chemical series as a test set, models and mechanisms of toxicity were first explored by testing the utility of ex vivo rat lens explant cultures as a safety screen. This model overpredicted the cataractogenic potential of ZD-2138 due to appreciably high lens drug levels and was abandoned in favor of a mechanism-based screen. Perturbations in lens sterol content, from a decline in lathosterol content, preceded cataract formation suggesting CJ-12,918 inhibited lens cholesterol biosynthesis (LCB). A 2-day bioassay in rats using ex vivo LCB assessments showed that the level of LCB inhibition was correlated with incidence of cataract formation in animal studies by these 5-LO inhibitors. Thereafter, this 2-day bioassay was applied to other pharmaceutical programs (neuronal nitric oxide synthase, sorbitol dehydrogenase inhibitor, squalene synthetase inhibitor and stearoyl-CoA desaturase-1 inhibitors/D4 antagonists) that demonstrated cataract formation in either rats or dogs. LCB inhibition >40% was associated with a high incidence of cataract formation in both rats and dogs that was species specific. Bioassay sensitivity/specificity were further explored with positive (RGH-6201/ciglitazone/U18666A) and negative (tamoxifen/naphthalene/galactose) mechanistic controls. This body of work over two decades shows that LCB inhibition was a common mechanism of cataract formation by pharmaceutical agents and defined a level of inhibition >40% that was typically associated with causing cataracts in safety assessment studies typically ≥1 month.


Assuntos
Catarata/induzido quimicamente , Colesterol/biossíntese , Colesterol/toxicidade , Inibidores Enzimáticos/toxicidade , Cristalino/efeitos dos fármacos , Cristalino/metabolismo , Tiazolidinedionas/toxicidade , Animais , Animais de Laboratório , Catarata/metabolismo , Cães , Feminino , Masculino , Preparações Farmacêuticas , Ratos , Ratos Sprague-Dawley
9.
J Appl Toxicol ; 39(8): 1192-1207, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31134659

RESUMO

Marketed (bosentan, ambrisentan) and discontinued (sitaxsentan, CI-1034) endothelin receptor antagonists were examined in the human micropatterned hepatocyte co-culture (MPCC) model HepatoPac® . Differences across hepatocellular health (cellular adenosine triphosphate/glutathione content), function (urea production/albumin secretion) and taurocholic acid transport (biliary clearance/excretion index) were compared using amiodarone and ciclosporin A as positive controls. Ambrisentan had the weakest potency in all six endpoints, while sitaxsentan, bosentan and CI-1034 had more potent effects on hepatobiliary transport than health/function endpoints. Normalization to clinical Cmax gave the following relative rank order of safety based on margins for each endpoint: ambrisentan ≥ CI-1034 ~ bosentan > sitaxsentan. These data suggested impaired hepatobiliary disposition might contribute to a more prominent role in liver injury associated within sensitive human populations exposed to these compounds than direct hepatocellular toxicity. Rat, dog and monkey MPCCs also showed greater sensitivity potential to disrupted hepatobiliary disposition compared with hepatocellular health/functional endpoints. Drug metabolism competency was exhibited across all species. In vivo, rats and dogs appear more resistant to transaminase elevations and/or histological evidence of liver injury caused by these mechanisms even at exceedingly high systemic exposures relative to sensitive humans. Rats and dogs are resistant to hepatobiliary toxicants due to physiological differences in bile composition/handling. Although traditional animal testing provides adequate safety coverage for advancement of novel pharmaceuticals into clinical trials, supplemental assays employing human MPCCs may strengthen weight-of-evidence predictions for sensitive human populations. Proving the predictive value of this single impact assessment model in advance of clinical trial information for human liver injury risk is needed across more pharmaceuticals.


Assuntos
Antagonistas dos Receptores de Endotelina/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Modelos Biológicos , Receptores de Endotelina/metabolismo , Ácido Taurocólico/metabolismo , Animais , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Cães , Antagonistas dos Receptores de Endotelina/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Fígado/metabolismo , Macaca fascicularis , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
10.
Pharmacol Res Perspect ; 7(1): e00467, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30784208

RESUMO

During a randomized Phase 1 clinical trial the drug candidate, PF-04895162 (ICA-105665), caused transaminase elevations (≥grade 1) in six of eight healthy subjects treated at 300 mg twice daily for 2-weeks (NCT01691274). This was unexpected since studies in rats (<6 months) and cynomolgus monkeys (<9 months) treated up to 100 mg/kg/day did not identify the liver as a target organ. Mechanistic studies showed PF-04895162 had low cytotoxic potential in human hepatocytes, but inhibited liver mitochondrial function and bile salt export protein (BSEP) transport. Clinical relevance of these postulated mechanisms of liver injury was explored in three treated subjects that consented to analysis of residual pharmacokinetic plasma samples. Compared to a nonresponder, two subjects with transaminase elevations displayed higher levels of miRNA122 and total/conjugated bile acid species, whereas one demonstrated impaired postprandial clearance of systemic bile acids. Elevated taurine and glycine conjugated to unconjugated bile acid ratios were observed in two subjects, one before the onset of elevated transaminases. Based on the affinity of conjugated bile acid species for transport by BSEP, the profile of plasma conjugated/unconjugated bile acid species was consistent with inhibition of BSEP. These data collectively suggest that the human liver injury by PF-04895162 was due to alterations in bile acid handling driven by dual BSEP/mitochondrial inhibition, two important risk factors associated with drug-induced liver injury in humans. Alterations in systemic bile acid composition were more important than total bile acids in the manifestation of clinical liver injury and may be a very early biomarker of BSEP inhibition.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Adulto , Animais , Transporte Biológico/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Método Duplo-Cego , Hepatócitos/metabolismo , Homeostase , Humanos , Macaca fascicularis , Masculino , Mitocôndrias Hepáticas/metabolismo , Ratos , Fatores de Risco , Especificidade da Espécie , Transaminases/metabolismo , Adulto Jovem
11.
Chem Res Toxicol ; 32(1): 156-167, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30525499

RESUMO

Mitochondrial toxicity has been shown to contribute to a variety of organ toxicities such as liver, cardiac, and kidney. In the past decades, two high-throughput applicable screening assays (isolated rat liver mitochondria; glucose-galactose grown HepG2 cells) to assess mitochondrial toxicity have been deployed in many pharmaceutical companies, and numerous publications have demonstrated its usefulness for mechanistic investigations. However, only two publications have demonstrated the utility of these screens as a predictor of human drug-induced liver injury. In the present study, we screened 73 hepatotoxicants, 46 cardiotoxicants, 49 nephrotoxicants, and 60 compounds not known to cause human organ toxicity for their effects on mitochondrial function(s) in the assays mentioned above. Predictive performance was evaluated using specificity and sensitivity of the assays for predicting organ toxicity. Our results show that the predictive performance of the mitochondrial assays are superior for hepatotoxicity as compared to cardiotoxicity and nephrotoxicity (sensitivity 63% vs 33% and 28% with similar specificity of 93%), when the analysis was done at 100* Cmax (drug concentration in human plasma level). We further explored the association of mitochondrial toxicity with physicochemical properties such as calculated log partition coefficient (cLogP), topological polar surface area, ionization status, and molecular weight of the drugs and found that cLogP was most significantly associated mitochondrial toxicity. Since these assays are amenable to higher throughput, we recommend that chemists use these assays to perform structure activity relationship early in the drug discovery process, when chemical matter is abundant. This assures that compounds that lack the propensity to cause mitochondrial dysfunction (and associated organ toxicity) will move forward into animals and humans.


Assuntos
Coração/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Preparações Farmacêuticas/análise , Animais , Físico-Química , Células Hep G2 , Humanos , Rim/metabolismo , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Curva ROC , Ratos
12.
J Toxicol Sci ; 43(10): 565-577, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298845

RESUMO

Precision medicine is an approach to developing drugs that focuses on employing biomarkers to stratify patients in clinical trials with the goal of improving efficacy and/or safety outcomes, ultimately increasing the odds of clinical success and drug approval. Precision medicine is an important tool for toxicologists to utilize, because its principles can be used to decide whether to pursue a drug target, to understand interindividual differences in response to drugs in both nonclinical and clinical settings, to aid in selecting doses that optimize efficacy or reduce adverse events, and to facilitate understanding of a drug's mode-of-action. Nonclinical models such as the mouse and non-human primate can be used to understand genetic variation and its potential translation to humans, and are available for toxicologists to employ in advance of drugs moving into clinical development. Understanding interindividual differences in response to drugs and how these differences can influence the drug's risk-benefit profile and lead to the identification of biomarkers that enhance patient efficacy and safety is of critical importance for toxicologists today, and in the future, as the fields of pharmacogenomics and genetics continue to advance.


Assuntos
Medicina de Precisão , Toxicologia , Animais , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Variação Genética , Humanos , Camundongos , Farmacogenética/tendências , Medicina de Precisão/tendências , Medição de Risco
14.
Chem Res Toxicol ; 30(5): 1219-1229, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28437613

RESUMO

The role of bile salt export protein (BSEP) inhibition in drug-induced liver injury (DILI) has been investigated widely, while inhibition of the canalicular multidrug resistant protein 3 (MDR3) has received less attention. This transporter plays a pivotal role in secretion of phospholipids into bile and functions coordinately with BSEP to mediate the formation of bile acid-containing biliary micelles. Therefore, inhibition of MDR3 in human hepatocytes was examined across 125 drugs (70 of Most-DILI-concern and 55 of No-DILI-concern). Of these tested, 41% of Most-DILI-concern and 47% of No-DILI-concern drugs had MDR3 IC50 values of <50 µM. A better distinction across DILI classifications occurred when systemic exposure was considered where safety margins of 50-fold had low sensitivity (0.29), but high specificity (0.96). Analysis of physical chemical property space showed that basic compounds were twice as likely to be MDR3 inhibitors as acids, neutrals, and zwitterions and that inhibitors were more likely to have polar surface area (PSA) values of <100 Å2 and cPFLogD values between 1.5 and 5. These descriptors, with different cutoffs, also highlighted a group of compounds that shared dual potency as MDR3 and BSEP inhibitors. Nine drugs classified as Most-DILI-concern compounds (four withdrawn, four boxed warning, and one liver injury warning in their approved label) had intrinsic potency features of <20 µM in both assays, thereby reinforcing the notion that multiple inhibitory mechanisms governing bile formation (bile acid and phospholipid efflux) may confer additional risk factors that play into more severe forms of DILI as shown by others for BSEP inhibitors combined with multidrug resistance-associated protein (MRP2, MRP3, MRP4) inhibitory properties. Avoiding physical property descriptors that highlight dual BSEP and MDR3 inhibition or testing drug candidates for inhibition of multiple efflux transporters (e.g., BSEP, MDR3, and MRPs) may be an effective strategy for prioritizing drug candidates with less likelihood of causing clinical DILI.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/sangue , Humanos
15.
Chem Res Toxicol ; 29(10): 1778-1788, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27676153

RESUMO

Conjugated hyperbilirubinemia accompanied by cholestasis is a frequent side effect during chronic treatment with the antimicrobial agent fusidic acid. Previous studies from our laboratory, addressing mechanisms of musculoskeletal toxicity arising from coadministration of fusidic acid with statins, demonstrated the ability of fusidic acid to potently inhibit human organic anion transporting polypeptides OATP1B1 (IC50 = 1.6 µM) and OATP1B3 (IC50 = 2.5 µM), which are responsible for the uptake-limited clearance of statins as well as bilirubin glucuronide conjugates. In the present work, inhibitory effects of fusidic acid were characterized against additional human hepatobiliary transporters [Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), and multidrug resistance-associated proteins MRP2 and MRP3] as well as uridine glucuronosyl transferase (UGT1A1), which mediate the disposition of bile acids and bilirubin (and its conjugated metabolites). Fusidic acid demonstrated concentration-dependent inhibition of human NTCP- and BSEP-mediated taurocholic acid transport with IC50 values of 44 and 3.8 µM, respectively. Inhibition of BSEP activity by fusidic acid was also consistent with the potent disruption of cellular biliary flux (AC50 = 11 µM) in the hepatocyte imaging assay technology assay, with minimal impact on other toxicity end points (e.g., cytotoxicity, mitochondrial membrane potential, reactive oxygen species generation, glutathione depletion, etc.). Fusidic acid also inhibited UGT1A1-catalyzed ß-estradiol glucuronidation activity in human liver microsomes with an IC50 value of 16 µM. Fusidic acid did not demonstrate any significant inhibition of ATP-dependent LTC4 transport (IC50's > 300 µM) in human MRP2 or MRP3 vesicles. R values, which reflect maximal in vivo inhibition, were estimated from a static mathematical model by taking into consideration the IC50 values generated in the various in vitro assays and clinically efficacious unbound fusidic acid concentrations. The magnitudes of in vivo interaction (R values) resulting from the inhibition of OATP1B1, UGT1A1, NTCP, and BSEP transport were ∼1.9-2.6, 1.1-1.2, 1.0-1.1, and 1.4-1.7, respectively, which are indicative of some degree of inherent toxicity risk, particularly via inhibition of OATP and BSEP. Collectively, these observations indicate that inhibition of human BSEP by fusidic acid could affect bile acid homeostasis, resulting in cholestatic hepatotoxicity in the clinic. Lack of direct inhibitory effects on MRP2 transport by fusidic acid suggests that conjugated hyperbilirubinemia does not arise via interference in MRP2-mediated biliary disposition of bilirubin glucuronides. Instead, it is possible that elevation in the level of bilirubin conjugates in blood is mediated through inhibition of hepatic OATPs, which are responsible for their reuptake and/or downregulation of MRP2 transporter as a consequence of cholestatic injury.

16.
Toxicol Sci ; 147(2): 500-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206150

RESUMO

Severe drug-induced liver injury (DILI) remains a major safety issue due to its frequency of occurrence, idiosyncratic nature, poor prognosis, and diverse underlying mechanisms. Numerous experimental approaches have been published to improve human DILI prediction with modest success. A retrospective analysis of 125 drugs (70 = most-DILI, 55 = no-DILI) from the Food and Drug Administration Liver Toxicity Knowledge Base was used to investigate DILI prediction based on consideration of human exposure alone or in combination with mechanistic assays of hepatotoxic liabilities (cytotoxicity, bile salt export pump inhibition, or mitochondrial inhibition/uncoupling). Using this dataset, human plasma Cmax,total ≥ 1.1 µM alone distinguished most-DILI from no-DILI compounds with high sensitivity/specificity (80/73%). Accounting for human exposure improved the sensitivity/specificity for each assay and helped to derive predictive safety margins. Compounds with plasma Cmax,total ≥ 1.1 µM and triple liabilities had significantly higher odds ratio for DILI than those with single/dual liabilities. Using this approach, a subset of recent pharmaceuticals with evidence of liver injury during clinical development was recognized as potential hepatotoxicants. In summary, plasma Cmax,total ≥ 1.1 µM along with multiple mechanistic liabilities is a major driver for predictions of human DILI potential. In applying this approach during drug development the challenge will be generating accurate estimates of plasma Cmax,total at efficacious doses in advance of generating true exposure data from clinical studies. In the meantime, drug candidates with multiple hepatotoxic liabilities should be deprioritized, since they have the highest likelihood of causing DILI in case their efficacious plasma Cmax,total in humans is higher than anticipated.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Testes de Toxicidade , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Concentração Máxima Permitida , Estudos Retrospectivos , Testes de Toxicidade/estatística & dados numéricos
17.
Hepatology ; 60(3): 1015-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24799086

RESUMO

UNLABELLED: Drug-induced liver injury (DILI) accounts for 20-40% of all instances of clinical hepatic failure and is a common reason for withdrawal of an approved drug or discontinuation of a potentially new drug from clinical/nonclinical development. Numerous individual risk factors contribute to the susceptibility to human DILI and its severity that are either compound- and/or patient-specific. Compound-specific primary mechanisms linked to DILI include: cytotoxicity, reactive metabolite formation, inhibition of bile salt export pump (BSEP), and mitochondrial dysfunction. Since BSEP is an energy-dependent protein responsible for the efflux of bile acids from hepatocytes, it was hypothesized that humans exposed to drugs that impair both mitochondrial energetics and BSEP functional activity are more sensitive to more severe manifestations of DILI than drugs that only have a single liability factor. As annotated in the United States National Center for Toxicological Research Liver Toxicity Knowledge Base (NCTR-LTKB), the inhibitory properties of 24 Most-DILI-, 28 Less-DILI-, and 20 No-DILI-concern drugs were investigated. Drug potency for inhibiting BSEP or mitochondrial activity was generally correlated across human DILI concern categories. However, drugs with dual potency as mitochondrial and BSEP inhibitors were highly associated with more severe human DILI, more restrictive product safety labeling related to liver injury, and appear more sensitive to the drug exposure (Cmax) where more restrictive labeling occurs. CONCLUSION: These data affirm that severe manifestations of human DILI are multifactorial, highly associated with combinations of drug potency specifically related to known mechanisms of DILI (like mitochondrial and BSEP inhibition), and, along with patient-specific factors, lead to differences in the severity and exposure thresholds associated with clinical DILI.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/fisiologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença
18.
J Med Chem ; 56(23): 9771-9, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24219752

RESUMO

A set of molecules that advanced into exploratory animal toxicology studies (two species) was examined to determine what properties contributed to success in these safety studies. Compounds were rigorously evaluated across numerous safety end points and classified as "pass" if a suitable in vivo therapeutic index (TI) was achieved for advancement into regulatory toxicology studies. The most predictive end point contributing to compound survival was a predicted human efficacious concentration (Ceff) of ≤250 nM (total drug) and ≤40 nM (free drug). This trend held across a wide range of CNS modes of action, encompassing targets such as enzymes, G-protein-coupled receptors, ion channels, and transporters.


Assuntos
Descoberta de Drogas/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Fármacos do Sistema Nervoso Central/efeitos adversos , Cães , Humanos , Lipídeos/química , Macaca fascicularis , Nível de Efeito Adverso não Observado , Ratos
19.
Invest Ophthalmol Vis Sci ; 54(12): 7189-97, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24130176

RESUMO

PURPOSE: Naphthalene induces cataract formation through the accumulation of its reactive metabolite, 1,2-naphthoquinone (1,2-NQ), in the ocular lens. 1,2-NQ increases lens protein oxidation and disrupts fiber cell membrane function; however, the association of these effects with changes in membrane structure is not understood. The goal of this study was to determine the direct effects of 1,2-NQ on membrane lipid oxidation and structural organization. METHODS: Iodometric approaches were used to measure the effects of naphthalene and 1,2-NQ on lipid hydroperoxide (LOOH) formation in model membranes composed of cholesterol and dilinoleoylphosphatidylcholine. Membrane samples were prepared at various cholesterol-to-phospholipid mole ratios and subjected to autoxidation at 37°C for 48 hours in the absence or presence of either agent alone (0.1-5.0 µM) or in combination with vitamin E. Small-angle x-ray diffraction was used to measure the effects of naphthalene and 1,2-NQ on membrane structure before and after exposure to oxidative stress. RESULTS: 1,2-NQ increased LOOH formation by 250% (P < 0.001) and 350% (P < 0.001) at 1.0 and 5.0 µM, respectively, whereas naphthalene decreased LOOH levels by 25% (P < 0.01) and 10% (NS). The pro-oxidant effect of 1,2-NQ was inversely affected by membrane cholesterol enrichment and completely blocked by vitamin E. 1,2-NQ also increased cholesterol domain formation by 360% in membranes exposed to oxidative stress; however, no significant changes in membrane lipid organization were observed with naphthalene under the same conditions. CONCLUSIONS: These data suggest a novel mechanism for naphthalene-induced cataract, facilitated by the direct effects of 1,2-NQ on lipid peroxidation and cholesterol domain formation.


Assuntos
Colesterol/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos de Membrana/análise , Naftoquinonas/farmacologia , Análise de Variância , Catarata/induzido quimicamente , Humanos , Peróxidos Lipídicos/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Naftalenos/farmacologia , Naftoquinonas/efeitos adversos , Naftoquinonas/metabolismo
20.
Toxicol Appl Pharmacol ; 272(2): 272-80, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23811329

RESUMO

To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs) as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify "toxic" and "non-toxic" drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Testes de Toxicidade/métodos , Peixe-Zebra , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/patologia , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Nível de Efeito Adverso não Observado , Consumo de Oxigênio/efeitos dos fármacos , Cultura Primária de Células , Ratos , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...