Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Forensic Sci Int Genet ; 53: 102527, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34034006

RESUMO

The Spanish and Portuguese-Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) has organized a second collaborative exercise on a simulated case of Disaster Victim Identification (DVI), with the participation of eighteen laboratories. The exercise focused on the analysis of a simulated plane crash case of medium-size resulting in 66 victims with varying degrees of fragmentation of the bodies (with commingled remains). As an additional difficulty, this second exercise included 21 related victims belonging to 6 families among the 66 missings to be identified. A total number of 228 post-mortem samples were represented with aSTR and mtDNA profiles, with a proportion of partial aSTR profiles simulating charred remains. To perform the exercise, participants were provided with aSTR and mtDNA data of 51 reference pedigrees -some of which deficient-including 128 donors for identification purposes. The exercise consisted firstly in the comparison of the post-mortem genetic profiles in order to re-associate fragmented remains to the same individual and secondly in the identification of the re-associated remains by comparing aSTR and mtDNA profiles with reference pedigrees using pre-established thresholds to report a positive identification. Regarding the results of the post-mortem samples re-associations, only a small number of discrepancies among participants were detected, all of which were from just a few labs. However, in the identification process by kinship analysis with family references, there were more discrepancies in comparison to the correct results. The identification results of single victims yielded fewer problems than the identification of multiple related victims within the same family groups. Several reasons for the discrepant results were detected: a) the identity/non-identity hypotheses were sometimes wrongly expressed in the likelihood ratio calculations, b) some laboratories failed to use all family references to report the DNA match, c) In families with several related victims, some laboratories firstly identified some victims and then unnecessarily used their genetic information to identify the remaining victims within the family, d) some laboratories did not correctly use "prior odds" values for the Bayesian treatment of the episode for both post-mortem/post-mortem re-associations as well as the ante-mortem/post-mortem comparisons to evaluate the probability of identity. For some of the above reasons, certain laboratories failed to identify some victims. This simulated "DNA-led" identification exercise may help forensic genetic laboratories to gain experience and expertize for DVI or MPI in using genetic data and comparing their own results with the ones in this collaborative exercise.


Assuntos
Impressões Digitais de DNA/métodos , Vítimas de Desastres , Genética Forense/métodos , Treinamento por Simulação , Acidentes Aeronáuticos , DNA Mitocondrial , Haplótipos , Humanos , Repetições de Microssatélites , Linhagem
2.
Forensic Sci Int Genet ; 28: 219-224, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28324847

RESUMO

DNA is a powerful tool available for forensic investigations requiring identification of species. However, it is necessary to develop and validate methods able to produce results in degraded and or low quality DNA samples with the high standards obligatory in forensic research. Here, we describe a voluntary collaborative exercise to test the recently developed Species Identification by Insertions/Deletions (SPInDel) method. The SPInDel kit allows the identification of species by the generation of numeric profiles combining the lengths of six mitochondrial ribosomal RNA (rRNA) gene regions amplified in a single reaction followed by capillary electrophoresis. The exercise was organized during 2014 by a Working Commission of the Spanish and Portuguese-Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG), created in 2013. The 24 participating laboratories from 10 countries were asked to identify the species in 11 DNA samples from previous GHEP-ISFG proficiency tests using a SPInDel primer mix and control samples of the 10 target species. A computer software was also provided to the participants to assist the analyses of the results. All samples were correctly identified by 22 of the 24 laboratories, including samples with low amounts of DNA (hair shafts) and mixtures of saliva and blood. Correct species identifications were obtained in 238 of the 241 (98.8%) reported SPInDel profiles. Two laboratories were responsible for the three cases of misclassifications. The SPInDel was efficient in the identification of species in mixtures considering that only a single laboratory failed to detect a mixture in one sample. This result suggests that SPInDel is a valid method for mixture analyses without the need for DNA sequencing, with the advantage of identifying more than one species in a single reaction. The low frequency of wrong (5.0%) and missing (2.1%) alleles did not interfere with the correct species identification, which demonstrated the advantage of using a method based on the analysis of multiple loci. Overall, the SPInDel method was easily implemented by laboratories using different genotyping platforms, the interpretation of results was straightforward and the SPInDel software was used without any problems. The results of this collaborative exercise indicate that the SPInDel method can be applied successfully in forensic casework investigations.


Assuntos
Eletroforese Capilar , Reação em Cadeia da Polimerase Multiplex , RNA Ribossômico/genética , Especificidade da Espécie , Animais , Comportamento Cooperativo , Feminino , Humanos , Laboratórios , Masculino
3.
Forensic Sci Int Genet ; 25: 210-213, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27690358

RESUMO

Communicating and interpreting genetic evidence in the administration of justice is currently a matter of great concern, due to the theoretical and technical complexity of the evaluative reporting and large difference in expertise between forensic experts and law professionals. A large number of initiatives have been taken trying to bridge this gap, contributing to the education of both parties. Results however have not been very encouraging, as most of these initiatives try to cope globally with the problem, addressing simultaneously theoretical and technical approaches which are in a quite heterogeneous state of development and validation. In consequence, the extension and complexity of the resulting documents disheartens their study by professionals (both jurists and geneticists) and makes a consensus very hard to reach even among the genetic experts' community. Here we propose a 'back-to-basics', example-driven approach, in which a model report for the two most common situations faced by forensic laboratories is presented. We do hope that this strategy will provide a solid basis for a stepwise generalisation.


Assuntos
Prova Pericial/normas , Ciências Forenses/normas , Prova Pericial/legislação & jurisprudência , Ciências Forenses/legislação & jurisprudência , Humanos , Laboratórios/legislação & jurisprudência , Laboratórios/normas , Relatório de Pesquisa/legislação & jurisprudência , Relatório de Pesquisa/normas
4.
Am J Hum Genet ; 83(6): 725-36, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19061982

RESUMO

Most studies of European genetic diversity have focused on large-scale variation and interpretations based on events in prehistory, but migrations and invasions in historical times could also have had profound effects on the genetic landscape. The Iberian Peninsula provides a suitable region for examination of the demographic impact of such recent events, because its complex recent history has involved the long-term residence of two very different populations with distinct geographical origins and their own particular cultural and religious characteristics-North African Muslims and Sephardic Jews. To address this issue, we analyzed Y chromosome haplotypes, which provide the necessary phylogeographic resolution, in 1140 males from the Iberian Peninsula and Balearic Islands. Admixture analysis based on binary and Y-STR haplotypes indicates a high mean proportion of ancestry from North African (10.6%) and Sephardic Jewish (19.8%) sources. Despite alternative possible sources for lineages ascribed a Sephardic Jewish origin, these proportions attest to a high level of religious conversion (whether voluntary or enforced), driven by historical episodes of social and religious intolerance, that ultimately led to the integration of descendants. In agreement with the historical record, analysis of haplotype sharing and diversity within specific haplogroups suggests that the Sephardic Jewish component is the more ancient. The geographical distribution of North African ancestry in the peninsula does not reflect the initial colonization and subsequent withdrawal and is likely to result from later enforced population movement-more marked in some regions than in others-plus the effects of genetic drift.


Assuntos
Cristianismo , Etnicidade/genética , Islamismo , Judeus , Grupos Populacionais , Cromossomos Humanos Y/genética , Demografia , Emigração e Imigração , Marcadores Genéticos , Haplótipos , Humanos , Masculino , Filogenia , Grupos Populacionais/genética , Portugal , Espanha
5.
Am J Hum Genet ; 83(5): 633-42, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18976729

RESUMO

The Phoenicians were the dominant traders in the Mediterranean Sea two thousand to three thousand years ago and expanded from their homeland in the Levant to establish colonies and trading posts throughout the Mediterranean, but then they disappeared from history. We wished to identify their male genetic traces in modern populations. Therefore, we chose Phoenician-influenced sites on the basis of well-documented historical records and collected new Y-chromosomal data from 1330 men from six such sites, as well as comparative data from the literature. We then developed an analytical strategy to distinguish between lineages specifically associated with the Phoenicians and those spread by geographically similar but historically distinct events, such as the Neolithic, Greek, and Jewish expansions. This involved comparing historically documented Phoenician sites with neighboring non-Phoenician sites for the identification of weak but systematic signatures shared by the Phoenician sites that could not readily be explained by chance or by other expansions. From these comparisons, we found that haplogroup J2, in general, and six Y-STR haplotypes, in particular, exhibited a Phoenician signature that contributed > 6% to the modern Phoenician-influenced populations examined. Our methodology can be applied to any historically documented expansion in which contact and noncontact sites can be identified.


Assuntos
Cromossomos Humanos Y , Emigração e Imigração , Genética Populacional , Haplótipos , Dinâmica Populacional , Alelos , Etnicidade/genética , Frequência do Gene , Geografia , História Antiga , Humanos , Masculino , Mar Mediterrâneo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...