Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Transm (Vienna) ; 128(4): 575-587, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33439365

RESUMO

X-Linked Dystonia-Parkinsonism (XDP) is a neurodegenerative disease affecting individuals with ancestry to the island of Panay in the Philippines. In recent years there has been considerable progress at elucidating the genetic basis of XDP and candidate disease mechanisms in patient-derived cellular models, but the neural substrates that give rise to XDP in vivo are still poorly understood. Previous studies of limited XDP postmortem brain samples have reported a selective dropout of medium spiny neurons within the striatum, although neuroimaging of XDP patients has detected additional abnormalities in multiple brain regions beyond the basal ganglia. Given the need to fully define the CNS structures that are affected in this disease, we created a brain bank in Panay to serve as a tissue resource for detailed studies of XDP-related neuropathology. Here we describe this platform, from donor recruitment and consent to tissue collection, processing, and storage, that was assembled within a predominantly rural region of the Philippines with limited access to medical and laboratory facilities. Thirty-six brains from XDP individuals have been collected over an initial 4 years period. Tissue quality was assessed based on histologic staining of cortex, RNA integrity scores, detection of neuronal transcripts in situ by fluorescent hybridization chain reaction, and western blotting of neuronal and glial proteins. The results indicate that this pipeline preserves tissue integrity to an extent compatible with a range of morphologic, molecular, and biochemical analyses. Thus the algorithms that we developed for working in rural communities may serve as a guide for establishing similar brain banks for other rare diseases in indigenous populations.


Assuntos
Distonia , Distúrbios Distônicos , Doenças Neurodegenerativas , Encéfalo/diagnóstico por imagem , Distúrbios Distônicos/genética , Doenças Genéticas Ligadas ao Cromossomo X , Humanos
2.
PLoS One ; 6(8): e22369, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21850221

RESUMO

Laminin α2 (LAMA2)-deficient congenital muscular dystrophy is a severe, early-onset disease caused by abnormal levels of laminin 211 in the basal lamina leading to muscle weakness, transient inflammation, muscle degeneration and impaired mobility. In a Lama2-deficient mouse model for this disease, animal survival is improved by muscle-specific expression of the apoptosis inhibitor Bcl-2, conferred by a MyoD-hBcl-2 transgene. Here we investigated early disease stages in this model to determine initial pathological events and effects of Bcl-2 on their progression. Using quantitative immunohistological and mRNA analyses we show that inflammation occurs very early in Lama2-deficient muscle, some aspects of which are reduced or delayed by the MyoD-hBcl-2 transgene. mRNAs for innate immune response regulators, including multiple Toll-like receptors (TLRs) and the inflammasome component NLRP3, are elevated in diseased muscle compared with age-matched controls expressing Lama2. MyoD-hBcl-2 inhibits induction of TLR4, TLR6, TLR7, TLR8 and TLR9 in Lama2-deficient muscle compared with non-transgenic controls, and leads to reduced infiltration of eosinophils, which are key death effector cells. This congenital disease model provides a new paradigm for investigating cell death mechanisms during early stages of pathogenesis, demonstrating that interactions exist between Bcl-2, a multifunctional regulator of cell survival, and the innate immune response.


Assuntos
Imunidade Inata/imunologia , Distrofia Muscular Animal/imunologia , Distrofia Muscular Animal/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Western Blotting , Imunidade Inata/genética , Marcação In Situ das Extremidades Cortadas , Infiltração Leucêmica/genética , Infiltração Leucêmica/imunologia , Infiltração Leucêmica/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Distrofia Muscular Animal/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 6 Toll-Like/genética , Receptor 6 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
3.
Exp Cell Res ; 312(16): 3084-95, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16857187

RESUMO

The syntrophins are a family of scaffolding proteins with multiple protein interaction domains that link signaling proteins to dystrophin family members. Each of the three most characterized syntrophins (alpha, beta1, beta2) contains a PDZ domain that binds a unique set of signaling proteins including kinases, ion and water channels, and neuronal nitric oxide synthase (nNOS). The PDZ domains of the gamma-syntrophins do not bind nNOS. In vitro pull-down assays show that the gamma-syntrophins can bind dystrophin but have unique preferences for the syntrophin binding sites of dystrophin family members. Despite their ability to bind dystrophin in vitro, neither gamma-syntrophin isoform co-localizes with dystrophin in skeletal muscle. Furthermore, gamma-syntrophins do not co-purify with dystrophin isolated from mouse tissue. These data suggest that the interaction of gamma-syntrophin with dystrophin is transient and potentially subject to regulatory mechanisms. gamma1-Syntrophin is highly expressed in brain and is specifically localized in hippocampal pyramidal neurons, Purkinje neurons in cerebellum, and cortical neurons. gamma2-Syntrophin is expressed in many tissues including skeletal muscle where it is found only in the subsynaptic space beneath the neuromuscular junction. In both neurons and muscle, gamma-syntrophin isoforms localize to the endoplasmic reticulum where they may form a scaffold for signaling and trafficking.


Assuntos
Proteínas Associadas à Distrofina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Distrofina/metabolismo , Proteínas Associadas à Distrofina/química , Perfilação da Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Neurônios/citologia , Óxido Nítrico Sintase Tipo I/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Células de Purkinje/citologia , Retículo Sarcoplasmático/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...