Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543265

RESUMO

Neurofibromatosis Type 1 (NF1) is a common neurogenic condition characterized by heterozygous loss of function mutations in the neurofibromin gene. NF1 patients are susceptible to the development of neurofibromas, including plexiform neurofibromas (pNFs), which occurs in about half of all cases. Plexiform neurofibroma are benign peripheral nerve sheath tumors originating from Schwann cells after complete loss of neurofibromin; they can be debilitating and also transform into deadly malignant peripheral nerve sheath tumors (MPNSTs). Here, our data indicates that silver nanoparticles (AgNPs) may be useful in the treatment of pNFs. We assessed the cytotoxicity of AgNPs using pNF cells and Schwann cells derived from the same NF1 patient. We found that AgNPs are selectively cytotoxic to pNF cells relative to isogenic Schwann cells. We then examined the role of neurofibromin expression on AgNP-mediated cytotoxicity; restoration of neurofibromin expression in pNF cells decreased sensitivity to AgNP, and knockdown of neurofibromin in isogenic Schwann cells increased sensitivity to AgNP, outlining a correlation between neurofibromin expression and AgNP-mediated cytotoxicity. AgNP was able to selectively remove pNF cells from a co-culture with patient-matched Schwann cells. Therefore, AgNPs represent a new approach for clinical management of NF1-associated pNF to address significant clinical need.

2.
J Pers Med ; 12(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35887576

RESUMO

Neurofibromatosis type 1 (NF1) is among the most common neurogenic disorders, characterized by loss of function mutations in the neurofibromin gene (NF1). NF1 patients are extremely susceptible to developing neurofibromas, which can transform into deadly malignant peripheral nerve sheath tumors (MPNSTs). At the center of these tumors are NF1-null Schwann cells. Here, we found that nanomedicine shows promise in the treatment of NF1-associated MPNSTs. We assessed the cytotoxicity of silver nanoparticles (AgNPs) in NF1-null NF1-associated MPNSTs, NF1-wildtype sporadic MPNST, and normal Schwann cells. Our data show that AgNP are selectivity cytotoxic to NF1-associated MPNSTs relative to sporadic MPNST and Schwann cells. Furthermore, we found that sensitivity to AgNPs is correlated with the expression levels of functional neurofibromin. The restoration of functional neurofibromin in NF1-associated MPNSTs reduces AgNP sensitivity, and the knockdown of neurofibromin in Schwann cells increases AgNP sensitivity. This finding is unique to AgNPs, as NF1 restoration does not alter sensitivity to standard of care chemotherapy doxorubicin in NF1-associated MPNSTs. Using an in vitro model system, we then found that AgNP can selectively eradicate NF1-associated MPNSTs in co-culture with Schwann cells at doses tolerable to normal cells. AgNP represents a novel therapy for the treatment of NF1-associated MPNSTs and addresses significant unmet clinical need.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA