Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-480845

RESUMO

During the RNA replication, coronaviruses require proofreading to maintain the integrity of their large genomes. Nsp14 associates with viral polymerase complex to excise the mismatched nucleotides. Aside from the exonuclease activity, nsp14 methyltransferase domain mediates cap methylation, facilitating translation initiation and protecting viral RNA from recognition by the innate immune sensors. The nsp14 exonuclease activity is modulated by a protein co-factor nsp10. While the nsp10/nsp14 complex structure is available, the mechanistic basis for nsp10 mediated modulation remains unclear in the absence of nsp14 structure. Here we provide a crystal structure of nsp14 in an apo-form. Comparative analysis of the apo- and nsp10 bound structures explain the modulatory role of the co-factor protein. Further, the structure presented in this study rationalizes the recently proposed idea of nsp14/nsp10/nsp16 ternary complex.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-477673

RESUMO

Coronaviruses protect their single-stranded RNA genome with a methylated cap during replication. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16 where nsp10 acts as a co-factor to both. Aditionally, nsp14 carries an exonuclease domain, which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins should be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex. This interaction is expected to encourage formation of mature capped viral mRNA, modulating the nsp14s exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436259

RESUMO

SO_SCPLOWUMMARYC_SCPLOWThe COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identified acriflavine as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...