Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(8): 4581-4591, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32048660

RESUMO

The elucidation of complex electrochemical reaction mechanisms requires advanced models with many intermediate reaction steps, which are governed by a large number of parameters like reaction rate constants and charge transfer coefficients. Overcomplicated models introduce high uncertainty in the choice of the parameters and cannot be used to obtain meaningful insights on the reaction pathway. We describe a new framework of optimal reaction mechanism selection based on the mean-field microkinetic modeling approach (MF-MKM) and adaptive sampling of model parameters. The optimal model is selected to provide both the accurate fitting of experimental data within the experimental error and low uncertainty of model parameters choice. Generally, this approach can be applied for any complex heterogeneous electrochemical reaction. We use the "2e-" electrocatalytic oxygen reduction reaction (ORR) on carbon nanotubes (CNTs) as a representative example of a sufficiently complex reaction. Rotating disk electrode (RDE) experimental data for both ORR in O2-saturated 0.1 M KOH solution and hydrogen peroxide oxidation/reduction reaction (HPRR/HPOR) in Ar-purged 0.1 M KOH solution with different HO2- concentrations were used to show the dependence of the model parameters uniqueness on the completeness of the experimental dataset. It is demonstrated that the optimal reaction mechanism for ORR on CNT and available experimental data consists of O2 adsorption step on the electrode surface and effective step of two-electron reduction to HO2- combined with its desorption from the electrode. The low uncertainty of estimated model parameters is provided only within the 2-step model being applied to the full available experimental dataset. The assessment of elementary step mechanisms on electro-catalytic materials including carbon-based electrodes requires more diverse experimental data and/or higher precision of experimental measurements to facilitate more precise microkinetic modeling of more complex reaction mechanisms.

2.
ACS Appl Mater Interfaces ; 11(5): 5084-5094, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30640433

RESUMO

We have synthesized a library of perovskite oxides with the composition La1- xSr xBO3-δ ( x = 0-1; B = Fe, Mn, Co) to systematically study anion-based pseudocapacitance. The electrochemical capacitance of these materials was evaluated by cyclic voltammetry and galvanostatic charging/discharging in 1 M KOH. We find that greater oxygen vacancy content (δ) upon systematic incorporation of Sr2+ linearly increases the surface-normalized capacity with a slope controlled by the B-site element. La0.2Sr0.8MnO2.7 exhibited the highest specific capacitance of 492 F g-1 at 5 mV s-1 relative to the Fe and Co oxides. In addition, the first all-perovskite asymmetric pseudocapacitor has been successfully constructed and characterized in neutral and alkaline aqueous electrolytes. We demonstrate that the asymmetric pseudocapacitor cell voltage can be increased by widening the difference between the B-site transition metal redox potentials in each electrode resulting in a maximum voltage window of 2.0 V in 1 M KOH. Among the three pairs of asymmetric pseudocapacitors constructed from SrCoO2.7, La0.2Sr0.8MnO2.7, and brownmillerite (BM)-Sr2Fe2O5, the BM-Sr2Fe2O5//SrCoO2.7 combination performed the best with a high energy density of 31 Wh kg-1 at 450 W kg-1 and power density of 10 000 W kg-1 at 28 Wh kg-1.

3.
Nat Commun ; 9(1): 3150, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089833

RESUMO

The electrolysis of water is of global importance to store renewable energy and the methodical design of next-generation oxygen evolution catalysts requires a greater understanding of the structural and electronic contributions that give rise to increased activities. Herein, we report a series of Ruddlesden-Popper La0.5Sr1.5Ni1-xFexO4±Î´ oxides that promote charge transfer via cross-gap hybridization to enhance electrocatalytic water splitting. Using selective substitution of lanthanum with strontium and nickel with iron to tune the extent to which transition metal and oxygen valence bands hybridize, we demonstrate remarkable catalytic activity of 10 mA cm-2 at a 360 mV overpotential and mass activity of 1930 mA mg-1ox at 1.63 V via a mechanism that utilizes lattice oxygen. This work demonstrates that Ruddlesden-Popper materials can be utilized as active catalysts for oxygen evolution through rational design of structural and electronic configurations that are unattainable in many other crystalline metal oxide phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...