Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ultramicroscopy ; 263: 113981, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38805837

RESUMO

Energy-dispersive X-ray spectroscopy (EDXS) mapping with a scanning transmission electron microscope (STEM) is commonly used for chemical characterization of materials. However, STEM-EDXS quantification becomes challenging when the phases constituting the sample under investigation share common elements and overlap spatially. In this paper, we present a methodology to identify, segment, and unmix phases with a substantial spectral and spatial overlap in a semi-automated fashion through combining non-negative matrix factorization with a priori knowledge of the sample. We illustrate the methodology using a sample taken from an electron beam-sensitive mineral assemblage representing Earth's deep mantle. With it, we retrieve the true EDX spectra of the constituent phases and their corresponding phase abundance maps. It further enables us to achieve a reliable quantification for trace elements having concentration levels of ∼100 ppm. Our approach can be adapted to aid the analysis of many materials systems that produce STEM-EDXS datasets having phase overlap and/or limited signal-to-noise ratio (SNR) in spatially-integrated spectra.

2.
EES Catal ; 2(1): 311-323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38222061

RESUMO

Electrochemical reduction of CO2 (CO2RR) is an attractive technology to reintegrate the anthropogenic CO2 back into the carbon cycle driven by a suitable catalyst. This study employs highly efficient multi-carbon (C2+) producing Cu2O nanocubes (NCs) decorated with CO-selective Au nanoparticles (NPs) to investigate the correlation between a high CO surface concentration microenvironment and the catalytic performance. Structure, morphology and near-surface composition are studied via operando X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy, operando high-energy X-ray diffraction as well as quasi in situ X-ray photoelectron spectroscopy. These operando studies show the continuous evolution of the local structure and chemical environment of our catalysts during reaction conditions. Along with its alloy formation, a CO-rich microenvironment as well as weakened average CO binding on the catalyst surface during CO2RR is detected. Linking these findings to the catalytic function, a complex compositional interplay between Au and Cu is revealed in which higher Au loadings primarily facilitate CO formation. Nonetheless, the strongest improvement in C2+ formation appears for the lowest Au loadings, suggesting a beneficial role of the Au-Cu atomic interaction for the catalytic function in CO2RR. This study highlights the importance of site engineering and operando investigations to unveil the electrocatalyst's adaptations to the reaction conditions, which is a prerequisite to understand its catalytic behavior.

3.
Nanomaterials (Basel) ; 13(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764598

RESUMO

In this work, we report on the efficiency of single InGaN/GaN quantum wells (QWs) grown on thin (<1 µm) GaN buffer layers on silicon (111) substrates exhibiting very high threading dislocation (TD) densities. Despite this high defect density, we show that QW emission efficiency significantly increases upon the insertion of an In-containing underlayer, whose role is to prevent the introduction of point defects during the growth of InGaN QWs. Hence, we demonstrate that point defects play a key role in limiting InGaN QW efficiency, even in samples where their density (2-3 × 109 cm-2) is much lower than that of TD (2-3 × 1010 cm-2). Time-resolved photoluminescence and cathodoluminescence studies confirm the prevalence of point defects over TDs in QW efficiency. Interestingly, TD terminations lead to the formation of independent domains for carriers, thanks to V-pits and step bunching phenomena.

4.
Acta Biomater ; 169: 566-578, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595772

RESUMO

One of the most widely used materials for bone graft substitution is ß-Tricalcium phosphate (ß-TCP; ß-Ca3(PO4)2). ß-TCP is typically produced by sintering in air or vacuum. During this process, evaporation of phosphorus (P) species occurs, leading to the formation of a calcium-rich alkaline layer. It was recently shown that the evaporation of P species could be prevented by co-sintering ß-TCP with dicalcium phosphate (DCPA; CaHPO4; mineral name: monetite). The aim of this study was to see how a change of sintering atmosphere could affect the physico-chemical and biological properties of ß-TCP. For this purpose, three experimental groups were considered: ß-TCP cylinders sintered in air and subsequently polished to remove the surface layer (control group); the same polished cylinders after subsequent annealing at 500 °C in air to generate a calcium-rich alkaline layer (annealed group); and finally, ß-TCP cylinders sintered in a monetite-rich atmosphere and subsequently polished (monetite group). XPS analysis confirmed that cylinders from the annealed group had a significantly higher Ca/P molar ratio at their surface than that of the control group while this ratio was significantly lower for the cylinders from the monetite group. Sintering ß-TCP in the monetite-rich atmosphere significantly reduced the grain size and increased the density. Changes of surface composition affected the activity of osteoclasts seeded onto the surfaces, since annealed ß-TCP cylinders were significantly less resorbed than ß-TCP cylinders sintered in the monetite-rich atmosphere. This suggests that an increase of the surface Ca/P molar ratio leads to a decrease of osteoclastic resorption. STATEMENT OF SIGNIFICANCE: Minimal changes of surface and bulk (< 1%) composition have major effects on the ability of osteoclasts to resorb ß-tricalcium phosphate (ß-TCP), one of the most widely used ceramics for bone substitution. The results presented in this study are thus important for the calcium phosphate community because (i) ß-TCP may have up to 5% impurities according to ISO and ASTM standards and still be considered to be "pure ß-TCP", (ii) ß-TCP surface properties are generally not considered during biocompatibility assessment and (iii) a rationale can be proposed to explain the various inconsistencies reported in the literature on the biological properties of ß-TCP.


Assuntos
Reabsorção Óssea , Cálcio , Humanos , Fosfatos de Cálcio/farmacologia , Atmosfera
5.
Ultramicroscopy ; 249: 113719, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37003127

RESUMO

We present two open-source Python packages: "electron spectro-microscopy" (espm) and "electron microscopy tables" (emtables). The espm software enables the simulation of scanning transmission electron microscopy energy-dispersive X-ray spectroscopy datacubes, based on user-defined chemical compositions and spatial abundance maps of constituent phases. The simulation process uses X-ray emission cross-sections generated via state-of-the-art calculations made with emtables. These tables are designed to be easily modifiable, either manually or using espm. The simulation framework is designed to test the application of decomposition algorithms for the analysis of STEM-EDX spectrum images with access to a known ground truth. We validate our approach using the case of a complex geology-related sample, comparing raw simulated and experimental datasets and the outputs of their non-negative matrix factorization. In addition to testing machine learning algorithms, our packages will also help experimental design, for instance, predicting dataset characteristics or establishing minimum counts needed to measure nanoscale features.

6.
J Phys Condens Matter ; 35(30)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37059114

RESUMO

Thin films of the solid solution Nd1-xLaxNiO3are grown in order to study the expected 0 K phase transitions at a specific composition. We experimentally map out the structural, electronic and magnetic properties as a function ofxand a discontinuous, possibly first order, insulator-metal transition is observed at low temperature whenx= 0.2. Raman spectroscopy and scanning transmission electron microscopy show that this is not associated with a correspondingly discontinuous global structural change. On the other hand, results from density functional theory (DFT) and combined DFT and dynamical mean field theory calculations produce a 0 K first order transition at around this composition. We further estimate the temperature-dependence of the transition from thermodynamic considerations and find that a discontinuous insulator-metal transition can be reproduced theoretically and implies a narrow insulator-metal phase coexistence withx. Finally, muon spin rotation (µSR) measurements suggest that there are non-static magnetic moments in the system that may be understood in the context of the first order nature of the 0 K transition and its associated phase coexistence regime.

7.
Inj Prev ; 28(4): 358-364, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35296544

RESUMO

OBJECTIVES: To identify, describe and critique state and local policies related to child passenger safety in for-hire motor vehicles including ridesharing and taxis. METHODS: We used standard legal research methods to collect policies governing the use of child restraint systems (CRS) in rideshare and taxi vehicles for all 50 states and the 50 largest cities in the USA. We abstracted the collected policies to determine whether the policy applies to specific vehicles, requires specific safety restraints in those vehicles, lists specific requirements for use of those safety restraints, seeks to enhance compliance and punishes noncompliance. RESULTS: All 50 states have policies that require the use of CRS for children under a certain age, weight or height. Seven states exempt rideshare vehicles and 28 states exempt taxis from their CRS requirements. Twelve cities have relevant policies with eight requiring CRS in rideshare vehicles, but not taxis, and two cities requiring CRS use in both rideshare vehicles and taxis. CONCLUSION: Most states require CRS use in rideshare vehicles, but not as many require CRS use in taxis. Though states describe penalties for drivers who fail to comply with CRS requirements, these penalties do not actually facilitate the use of CRS in rideshare or taxis. Furthermore, there is ambiguity in the laws about who is responsible for the provision and installation of the restraints. To prevent serious or fatal injuries in children, policy-makers should adopt policies that require, incentivise and facilitate the use of CRS in rideshare vehicles and taxis.


Assuntos
Sistemas de Proteção para Crianças , Acidentes de Trânsito/prevenção & controle , Automóveis , Criança , Cidades , Humanos , Veículos Automotores , Políticas
8.
ACS Nano ; 15(10): 16501-16514, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34585583

RESUMO

Recently, there has been significant interest in using dielectric nanocavities for the controlled scattering of light, owing to the diverse electromagnetic modes that they support. For plasmonic systems, electron energy-loss spectroscopy (EELS) is now an established method enabling structure-optical property analysis at the scale of the nanostructure. Here, we instead test its potential for the near-field mapping of photonic eigenmodes supported in planar dielectric nanocavities, which are lithographically patterned from amorphous silicon according to standard photonic principles. By correlating results with finite element simulations, we demonstrate how many of the EELS excitations can be directly corresponded to various optical eigenmodes of interest for photonic engineering. The EELS maps present a high spatial definition, displaying intensity features that correlate precisely to the impact parameters giving the highest probability of modal excitation. Further, eigenmode characteristics translate into their EELS signatures, such as the spatially and energetically extended signal of the low Q-factor electric dipole and nodal intensity patterns emerging from excitation of toroidal and second-order magnetic modes within the nanocavity volumes. Overall, the spatial-spectral nature of the data, combined with our experimental-simulation toolbox, enables interpretation of subtle changes in the EELS response across a range of nanocavity dimensions and forms, with certain simulated resonances matching the excitation energies within ±0.01 eV. By connecting results to far-field simulations, perspectives are offered for tailoring the nanophotonic resonances via manipulating nanocavity size and shape.

9.
Nano Lett ; 21(12): 5217-5224, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34086468

RESUMO

Crystallographic point defects (PDs) can dramatically decrease the efficiency of optoelectronic semiconductor devices, many of which are based on quantum well (QW) heterostructures. However, spatially resolving individual nonradiative PDs buried in such QWs has so far not been demonstrated. Here, using high-resolution cathodoluminescence (CL) and a specific sample design, we spatially resolve, image, and analyze nonradiative PDs in InGaN/GaN QWs at the nanoscale. We identify two different types of PDs by their contrasting behavior with temperature and measure their densities from 1014 cm-3 to as high as 1016 cm-3. Our CL images clearly illustrate the interplay between PDs and carrier dynamics in the well: increasing PD concentration severely limits carrier diffusion lengths, while a higher carrier density suppresses the nonradiative behavior of PDs. The results in this study are readily interpreted directly from CL images and represent a significant advancement in nanoscale PD analysis.

10.
Nano Lett ; 21(6): 2436-2443, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33685129

RESUMO

Nanoscale mapping of the distinct electronic phases characterizing the metal-insulator transition displayed by most of the rare-earth nickelate compounds is fundamental for discovering the true nature of this transition and the possible couplings that are established at the interfaces of nickelate-based heterostructures. Here, we demonstrate that this can be accomplished by using scanning transmission electron microscopy in combination with electron energy-loss spectroscopy. By tracking how the O K and Ni L edge fine structures evolve across two different NdNiO3/SmNiO3 superlattices, displaying either one or two metal-insulator transitions depending on the individual layer thickness, we are able to determine the electronic state of each of the individual constituent materials. We further map the spatial configuration associated with their metallic/insulating regions, reaching unit cell spatial resolution. With this, we estimate the width of the metallic/insulating boundaries at the NdNiO3/SmNiO3 interfaces, which is measured to be on the order of four unit cells.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20206540

RESUMO

BackgroundCoronavirus disease 2019 (COVID-19) has been associated with a coagulopathy giving rise to venous and arterial thrombotic events. The objective of our study was to determine whether markers of coagulation and hemostatic activation (MOCHA) on admission could identify COVID-19 patients at risk for thrombotic events and other complications. MethodsCOVID-19 patients admitted to a tertiary academic healthcare system from April 3, 2020 to July 31, 2020 underwent standardized admission testing of MOCHA profile parameters (plasma d-dimer, prothrombin fragment 1.2, thrombin-antithrombin complex, and fibrin monomer) with abnormal MOCHA defined as [≥] 2 markers above the reference. Prespecified thrombotic endpoints included deep vein thrombosis, pulmonary embolism, myocardial infarction, ischemic stroke, and access line thrombosis; other complications included ICU admission, intubation and mortality. We excluded patients on anticoagulation therapy prior to admission and those who were pregnant. ResultsOf 276 patients (mean age 59 {+/-} 6.4 years, 47% female, 62% African American race) who met study criteria, 45 (16%) had a thrombotic event. Each coagulation marker on admission was independently associated with a vascular endpoint (p<0.05). Admission MOCHA with [≥] 2 abnormalities (n=203, 74%) was associated with in-hospital vascular endpoints (OR 3.3, 95% CI 1.2-8.8), as were admission D-dimer [≥] 2000 ng/mL (OR 3.1, 95% CI 1.5-6.6), and admission D-dimer [≥] 3000 ng/mL (OR 3.6, 95% CI 1.6-7.9). However, only admission MOCHA with [≥] 2 abnormalities was associated with ICU admission (OR 3.0, 95% CI 1.7-5.2) and intubation (OR 3.2, 95% CI 1.6-6.4), while admission D-dimer [≥]2000 ng/mL and admission D-dimer [≥] 3000 ng/mL were not associated. MOCHA and D-dimer cutoffs were not associated with mortality. Admission MOCHA with <2 abnormalities (26% of the cohort) had a sensitivity of 88% and negative predictive value of 93% for a vascular endpoint. ConclusionsAdmission MOCHA with [≥] 2 abnormalities identified COVID-19 patients at increased risk of ICU admission and intubation during hospitalization more effectively than isolated admission D-dimer measurement. Admission MOCHA with <2 abnormalities identified a subgroup of patients at low risk for vascular events. Our results suggest that an admission MOCHA profile can be useful to risk-stratify COVID-19 patients.

12.
Adv Mater ; 32(38): e2001030, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32762011

RESUMO

The nature of the liquid-solid interface determines the characteristics of a variety of physical phenomena, including catalysis, electrochemistry, lubrication, and crystal growth. Most of the established models for crystal growth are based on macroscopic thermodynamics, neglecting the atomistic nature of the liquid-solid interface. Here, experimental observations and molecular dynamics simulations are employed to identify the 3D nature of an atomic-scale ordering of liquid Ga in contact with solid GaAs in a nanowire growth configuration. An interplay between the liquid ordering and the formation of a new bilayer is revealed, which, contrary to the established theories, suggests that the preference for a certain polarity and polytypism is influenced by the atomic structure of the interface. The conclusions of this work open new avenues for the understanding of crystal growth, as well as other processes and systems involving a liquid-solid interface.

13.
Nat Mater ; 19(11): 1182-1187, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32778815

RESUMO

Controlling phase transitions in transition metal oxides remains a central feature of both technological and fundamental scientific relevance. A well-known example is the metal-insulator transition, which has been shown to be highly controllable. However, the length scale over which these phases can be established is not yet well understood. To gain insight into this issue, we atomically engineered an artificially phase-separated system through fabricating epitaxial superlattices that consist of SmNiO3 and NdNiO3, two materials that undergo a metal-to-insulator transition at different temperatures. We demonstrate that the length scale of the interfacial coupling between metal and insulator phases is determined by balancing the energy cost of the boundary between a metal and an insulator and the bulk phase energies. Notably, we show that the length scale of this effect exceeds that of the physical coupling of structural motifs, which introduces a new framework for interface-engineering properties at temperatures against the bulk energetics.

14.
J Am Chem Soc ; 141(36): 14190-14199, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31418268

RESUMO

Single-atom catalysts exhibit well-defined active sites and potentially maximum atomic efficiency. However, they are unsuitable for reactions that benefit from bimetallic promotion such as the oxygen evolution reaction (OER) in an alkaline medium. Here we show that a single-atom Co precatalyst can be in situ transformed into a Co-Fe double-atom catalyst for the OER. This catalyst exhibits one of the highest turnover frequencies among metal oxides. Electrochemical, microscopic, and spectroscopic data, including those from operando X-ray absorption spectroscopy, reveal a dimeric Co-Fe moiety as the active site of the catalyst. This work demonstrates double-atom catalysis as a promising approach for the development of defined and highly active OER catalysts.

15.
Nano Lett ; 19(8): 5754-5761, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31348861

RESUMO

The relationship between composition and plasmonic properties in noble metal nanoalloys is still largely unexplored. Yet, nanoalloys of noble metals, such as gold, with transition elements, such as iron, have unique properties and a number of potential applications, ranging from nanomedicine to magneto-plasmonics and plasmon-enhanced catalysis. Here, we investigate the localized surface plasmon resonance at the level of the single Au-Fe nanoparticle by applying a strategy that combines experimental measurements using near field electron energy loss spectroscopy with theoretical studies via a full wave numerical analysis and density functional theory calculations of electronic structure. We show that, as the iron fraction increases, the plasmon resonance is blue-shifted and significantly damped, as a consequence of the changes in the electronic band structure of the alloy. This allows the identification of three relevant phenomena to be considered in the design and realization of any plasmonic nanoalloy, specifically: the appearance of new states around the Fermi level; the change in the free electron density of the metal; and the blue shift of interband transitions. Overall, this study provides new opportunities for the control of the optical response in Au-Fe and other plasmonic nanoalloys, which are useful for the realization of magneto-plasmonic devices for molecular sensing, thermo-plasmonics, bioimaging, photocatalysis, and the amplification of spectroscopic signals by local field enhancement.

16.
Chem Sci ; 9(25): 5530-5535, 2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-30061984

RESUMO

Bimetallic Ru-Ni and Rh-Ni nanocatalysts coated with a phase transfer agent efficiently cleave aryl ether C-O linkages in water in the presence of hydrogen. For dimeric substrates with weaker C-O linkages, i.e. α-O-4 and ß-O-4 bonds, low loadings of the precious metal (Rh or Ru) in the nanocatalysts quantitatively afford monomers, whereas for the stronger 4-O-5 linkage higher amounts of the precious metal are required to achieve complete conversion. Under the optimized, relatively mild operating conditions, the C-O bonds in a range of substituted ether compounds are efficiently cleaved, and mechanistic insights into the reaction pathways are provided. This work paves the way to sustainable approaches for the hydrogenolysis of C-O bonds.

17.
Nat Commun ; 9(1): 2632, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980683

RESUMO

The single-layer graphene film, when incorporated with molecular-sized pores, is predicted to be the ultimate membrane. However, the major bottlenecks have been the crack-free transfer of large-area graphene on a porous support, and the incorporation of molecular-sized nanopores. Herein, we report a nanoporous-carbon-assisted transfer technique, yielding a relatively large area (1 mm2), crack-free, suspended graphene film. Gas-sieving (H2/CH4 selectivity up to 25) is observed from the intrinsic defects generated during the chemical-vapor deposition of graphene. Despite the ultralow porosity of 0.025%, an attractive H2 permeance (up to 4.1 × 10-7 mol m-2 s-1 Pa-1) is observed. Finally, we report ozone functionalization-based etching and pore-modification chemistry to etch hydrogen-selective pores, and to shrink the pore-size, improving H2 permeance (up to 300%) and H2/CH4 selectivity (up to 150%). Overall, the scalable transfer, etching, and functionalization methods developed herein are expected to bring nanoporous graphene membranes a step closer to reality.

18.
Nano Lett ; 18(2): 1205-1212, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29314849

RESUMO

Large-area hexagonal boron nitride (h-BN) promises many new applications of two-dimensional materials, such as the protective packing of reactive surfaces or as membranes in liquids. However, scalable production beyond exfoliation from bulk single crystals remained a major challenge. Single-orientation monolayer h-BN nanomesh is grown on 4 in. wafer single crystalline rhodium films and transferred on arbitrary substrates such as SiO2, germanium, or transmission electron microscopy grids. The transfer process involves application of tetraoctylammonium bromide before electrochemical hydrogen delamination. The material performance is demonstrated with two applications. First, protective sealing of h-BN is shown by preserving germanium from oxidation in air at high temperatures. Second, the membrane functionality of the single h-BN layer is demonstrated in aqueous solutions. Here, we employ a growth substrate intrinsic preparation scheme to create regular 2 nm holes that serve as ion channels in liquids.

19.
Sci Rep ; 7(1): 10630, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878280

RESUMO

The ability to obtain three-dimensional (3-D) information about morphologies of nanostructures elucidates many interesting properties of materials in both physical and biological sciences. Here we demonstrate a novel method in scanning transmission electron microscopy (STEM) that gives a fast and reliable assessment of the 3-D configuration of curvilinear nanostructures, all without needing to tilt the sample through an arc. Using one-dimensional crystalline defects known as dislocations as a prototypical example of a complex curvilinear object, we demonstrate their 3-D reconstruction two orders of magnitude faster than by standard tilt-arc TEM tomographic techniques, from data recorded by selecting different ray paths of the convergent STEM probe. Due to its speed and immunity to problems associated with a tilt arc, the tilt-less 3-D imaging offers important advantages for investigations of radiation-sensitive, polycrystalline, or magnetic materials. Further, by using a segmented detector, the total electron dose is reduced to a single STEM raster scan acquisition; our tilt-less approach will therefore open new avenues for real-time 3-D electron imaging of dynamic processes.

20.
Nanomaterials (Basel) ; 7(8)2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820442

RESUMO

Aqueous synthesis without ligands of iron oxide nanoparticles (IONPs) with exceptional properties still remains an open issue, because of the challenge to control simultaneously numerous properties of the IONPs in these rigorous settings. To solve this, it is necessary to correlate the synthesis process with their properties, but this correlation is until now not well understood. Here, we study and correlate the structure, crystallinity, morphology, as well as magnetic, relaxometric and heating properties of IONPs obtained for different durations of the hydrothermal treatment that correspond to the different growth stages of IONPs upon initial co-precipitation in aqueous environment without ligands. We find that their properties were different for IONPs with comparable diameters. Specifically, by controlling the growth of IONPs from primary to secondary particles firstly by colloidal and then also by magnetic interactions, we control their crystallinity from monocrystalline to polycrystalline IONPs, respectively. Surface energy minimization in the aqueous environment along with low temperature treatment is used to favor nearly defect-free IONPs featuring superior properties, such as high saturation magnetization, magnetic volume, surface crystallinity, the transversal magnetic resonance imaging (MRI) relaxivity (up to r2 = 1189 mM-1·s-1 and r2/r1 = 195) and specific absorption rate, SAR (up to 1225.1 W·gFe-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...