Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22278431

RESUMO

BackgroundNew COVID-19 medications force decision makers to weigh limited evidence of efficacy and cost in determining which patient populations to target for treatment. A case in point is nirmatrelvir/ritonavir, a drug that has been recommended for elderly, high-risk individuals, regardless of vaccination status, even though clinical trials have only evaluated it in unvaccinated patients. A simple optimization framework might inform a more reasoned approach to the tradeoffs implicit in the treatment allocation decision. MethodsWe used a mathematical model to analyze the cost-effectiveness of four nirmatrelvir/ritonavir allocation strategies, stratified by vaccination status and risk for severe disease. We considered treatment effectiveness at preventing hospitalization ranging from 21% to 89%. Sensitivity analyses were performed on major parameters of interest. A web-based tool was developed to permit decision-makers to tailor the analysis to their settings and priorities. ResultsProviding nirmatrelvir/ritonavir to unvaccinated patients at high-risk for severe disease was cost-saving when effectiveness against hospitalization exceeded 33% and cost-effective under all other data scenarios we considered. The cost-effectiveness of other allocation strategies, including those for vaccinated adults and those at lower-risk for severe disease, depended on willingness-to-pay thresholds, treatment cost and effectiveness, and the likelihood of severe disease. ConclusionsPriority for nirmatrelvir/ritonavir treatment should be given to unvaccinated persons at high-risk of severe disease from COVID-19. Further priority may be assigned by weighing treatment effectiveness, disease severity, drug cost, and willingness to pay for deaths averted.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270465

RESUMO

BackgroundWhile almost 60% of the world has received at least one dose of COVID-19 vaccine, the global distribution of vaccination has not been equitable. Only 4% of the population of low-income countries has received a full primary vaccine series, compared to over 70% of the population of high-income nations. MethodsWe used economic and epidemiologic models, parameterized with public data on global vaccination and COVID-19 deaths, to estimate the potential benefits of scaling up vaccination programs in low and lower-middle income countries (LIC/LMIC) in 2022 in the context of global spread of the Omicron variant of SARS-CoV2. Outcomes were expressed as number of avertable deaths through vaccination, costs of scale-up, and cost per death averted. We conducted sensitivity analyses over a wide range of parameter estimates to account for uncertainty around key inputs. FindingsGlobal scale up of vaccination to provide two doses of mRNA vaccine to everyone in LIC/LMIC would cost $35.5 billion and avert 1.3 million deaths from COVID-19, at a cost of $26,900 per death averted. Scaling up vaccination to provide three doses of mRNA vaccine to everyone in LIC/LMIC would cost $61.2 billion and avert 1.5 million deaths from COVID-19 at a cost of $40,800 per death averted. Lower estimated infection fatality ratios, higher cost-per-dose, and lower vaccine effectiveness or uptake lead to higher cost-per-death averted estimates in the analysis. InterpretationScaling up COVID-19 global vaccination would avert millions of COVID-19 deaths and represents a reasonable investment in the context of the value of a statistical life (VSL). Given the magnitude of expected mortality facing LIC/LMIC without vaccination, this effort should be an urgent priority.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...