Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 277: 114222, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34033901

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: There have been different methods proposed to prevent the sexual transmission of HIV-1 and many of them have centered on the use of anti-retrovirals as microbicides. Given that a large section of the African population still relies on herbal medicine, Lobostemon trigonus (L. trigonus), a traditionally used medicinal plant in South Africa to treat HIV-1 was further investigated for its potential as a natural microbicide to prevent the sexual transmission of HIV-1. METHODS: The aerial parts of L. trigonus were oven-dried at 80 °C, ground, extracted with boiling water for 30 min and then filtered. The aqueous extract produced was then bioassayed using different HIV-1 inhibition assays. The active components were purified and chemically profiled using ultra-performance liquid chromatography/quadrupole time-of flight mass spectrometry (UPLC-qTOF-MS). The mechanism of HIV-1 inhibition was determined by fusion arrest assay and time of addition assay. Molecular modelling and molecular dynamic simulations, using Schrödinger, were used to better understand the molecule's mechanism of entry inhibition by evaluating their docking affinity and stability against the gp120 of HIV-1. RESULTS: The aqueous extract of this plant had a broad spectrum of activity against different subtypes of the virus; neutralizing subtype A, B and C in the TZM-bl cells, with IC50 values ranging from 0.10 to 7.21 µg/mL. The extract was also inhibitory to the virus induced cytopathic effects in CEM-SS cells with an EC50 of 8.9 µg/mL. In addition, it inhibited infection in peripheral blood mononuclear cells (PBMC) and macrophages with IC50 values of 0.97 and 4.4 µg/mL, respectively. In the presence of vaginal and seminal simulants, and in human semen it retained its inhibitory activity albeit with a decrease in efficiency, by about 3-fold. Studies of the mode of action suggested that the extract blocked HIV-1 attachment to target cells. No toxicity was observed when the Lactobacilli strains, L. acidophilus, L. jensenii, and L. crispatus that populate the female genital tract were cultured in the presence of L. trigonus extract. UPLC-qTOF-MS analyses of the purified fraction of the extract, confirmed the presence of six compounds of which four were identified as rosmarinic acid, salvianolic acids B and C and lithospermic acid. The additional molecular dynamic simulations provided further insight into the entry inhibitory characteristics of salvianolic acid B against the HIV-1 gp120, with a stable pose being found within the CD4 binding site. CONCLUSION: The data suggests that the inhibitory effect of L. trigonus may be due to the presence of organic acids which are known to possess anti-HIV-1 properties. The molecules salvianolic acids B and C have been identified for the first time in L. trigonus species. Our study also showed that the L. trigonus extract blocked HIV-1 attachment to target cells, and that it has a broad spectrum of activity against different subtypes of the virus; thus, justifying further investigation as a HIV-1 microbicide.


Assuntos
Boraginaceae/química , HIV-1/efeitos dos fármacos , Extratos Vegetais/farmacologia , Fármacos Anti-HIV/isolamento & purificação , Fármacos Anti-HIV/farmacologia , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Masculino , Modelos Moleculares , Simulação de Dinâmica Molecular , Componentes Aéreos da Planta , África do Sul
2.
Biochem Biophys Rep ; 7: 408-414, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28955932

RESUMO

We have previously shown that the aptamer, UCLA1, is able to inhibit HIV-1 replication in peripheral blood mononuclear cells (PBMCs) by binding to residues in gp120. In this study we examined whether UCLA1 was effective against HIV-1 subtype C isolates in monocyte-derived macrophages (MDMs). Of 4 macrophage-tropic isolates tested, 3 were inhibited by UCLA1 in the low nanomolar range (IC80<29 nM). One isolate that showed reduced susceptibility (<50 nM) to UCLA1 contained mutations in the α5 helix next to the CD4 and co-receptor (CoR) binding complex. To further evaluate aptamer resistance, two primary viruses were subjected to increasing concentrations of UCLA1 over a period of 84 days in PBMCs. One isolate showed a 7-fold increase in IC80 (351 nM) associated with genetic changes, some of which were previously implicated in resistance. This included F223Y in the C2 region and P369L within the CD4 and CoR binding complex. A second isolate showed a 3-fold increase in IC80 (118 nM) but failed to show any genetic changes. Collectively, these data show that UCLA1 can efficiently block HIV-1 infection in MDMs and PBMCs with escape mutations arising in some isolates after prolonged exposure to the aptamer. This supports the further development of the UCLA1 aptamer as a HIV-1 entry inhibitor.

3.
J Virol ; 85(17): 9039-50, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21697467

RESUMO

The glycans on HIV-1 gp120 play an important role in shielding neutralization-sensitive epitopes from antibody recognition. They also serve as targets for lectins that bind mannose-rich glycans. In this study, we investigated the interaction of the lectin griffithsin (GRFT) with HIV-1 gp120 and its effects on exposure of the CD4-binding site (CD4bs). We found that GRFT enhanced the binding of HIV-1 to plates coated with anti-CD4bs antibodies b12 and b6 or the CD4 receptor mimetic CD4-IgG2. The average enhancement of b12 or b6 binding was higher for subtype B viruses than for subtype C, while for CD4-IgG2, it was similar for both subtypes, although lower than observed with antibodies. This GRFT-mediated enhancement of HIV-1 binding to b12 was reflected in synergistic neutralization for 2 of the 4 viruses tested. The glycan at position 386, which shields the CD4bs, was involved in both GRFT-mediated enhancement of binding and neutralization synergism between GRFT and b12. Although GRFT enhanced CD4bs exposure, it simultaneously inhibited ligand binding to the coreceptor binding site, suggesting that GRFT-dependent enhancement and neutralization utilize independent mechanisms. This study shows for the first time that GRFT interaction with gp120 exposes the CD4bs through binding the glycan at position 386, which may have implications for how to access this conserved site.


Assuntos
Proteínas de Algas/metabolismo , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Lectinas/metabolismo , Lectinas de Ligação a Manose/metabolismo , Anticorpos Neutralizantes/metabolismo , Sítios de Ligação , Antígenos CD4/metabolismo , Humanos , Testes de Neutralização , Lectinas de Plantas , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...