Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 637-638: 1607-1616, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29925195

RESUMO

Disinfection is an integral component of water treatment performed daily on large volumes of water worldwide. Chemical disinfection may result in the unintended production of disinfectant by-products (DBPs) due to reactions between disinfectants and natural organic matter present in the source water. Due to their potential toxicity, levels of DBPs have been strictly regulated in drinking waters for many years. With water reuse now becoming more common around the world DBPs are increasingly becoming a concern in recycled waters, where a much larger amount and variety of compounds may be formed due to a higher abundance and diversity of organic material in the source waters. Regulation of DBPs in recycled waters is limited; generally, drinking water regulations are applied in place of specific guidelines for recycled waters. Such regulations are set for only 11, commonly observed, compounds of the 600+ that may, potentially, be found. In this review an overview of current research in this area is provided, the types of compounds that have been observed, methods for their analysis and possible regulation are also discussed. Through this review it is evident that there is a knowledge gap for the occurrence of DBPs in recycled waters, especially when comparing this information to that available for drinking waters. The concentrations of DBPs observed in recycled waters are seen to be higher than those in drinking water, though still within potable threshold limits. It is clear that there is a need for the analysis and understanding of a larger suite of compounds in recycled waters, as these will most likely be the source of future, global renewable water.


Assuntos
Desinfetantes/análise , Desinfecção/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Desinfetantes/normas , Desinfecção/legislação & jurisprudência , Reciclagem , Poluentes Químicos da Água/normas , Purificação da Água/legislação & jurisprudência
2.
Artigo em Inglês | MEDLINE | ID: mdl-28505068

RESUMO

Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid-liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9-9.3 µg/L).


Assuntos
Desinfetantes/química , Trialometanos/química , Poluentes Químicos da Água/química , Abastecimento de Água/normas , Cromatografia Gasosa , Reciclagem , Água/análise , Purificação da Água/métodos
3.
Sci Total Environ ; 512-513: 210-214, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25625633

RESUMO

Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications.


Assuntos
Clorofórmio/análise , Monitoramento Ambiental , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Clorofórmio/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...