Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-486331

RESUMO

SARS-CoV-2 continues to represent a global health emergency as a highly transmissible, airborne virus. An important coronaviral drug target for treatment of COVID-19 is the conserved main protease (Mpro). Nirmatrelvir is a potent Mpro inhibitor and the antiviral component of Paxlovid. The significant viral sequencing effort during the ongoing COVID-19 pandemic represented a unique opportunity to assess potential nirmatrelvir escape mutations from emerging variants of SARS-CoV-2. To establish the baseline mutational landscape of Mpro prior to the introduction of Mpro inhibitors, Mpro sequences and its cleavage junction regions were retrieved from [~]4,892,000 high-quality SARS-CoV-2 genomes in GISAID. Any mutations identified from comparison to the reference sequence (Wuhan-hu-1) were cataloged and analyzed. Mutations at sites key to nirmatrelvir binding and protease functionality (e.g., dimerization sites) were still rare. Structural comparison of Mpro also showed conservation of key nirmatrelvir contact residues across the extended Coronaviridae family (alpha-, beta-, and gamma-coronaviruses). Additionally, we showed that over time the SARS-CoV-2 Mpro enzyme remained under purifying selection and was highly conserved relative to the spike protein. Now, with the EUA approval of Paxlovid and its expected widespread use across the globe, it is essential to continue large-scale genomic surveillance of SARS-CoV-2 Mpro evolution. This study establishes a robust analysis framework for monitoring emergent mutations in millions of virus isolates, with the goal of identifying potential resistance to present and future SARS-CoV-2 antivirals. ImportanceThe recent authorization of oral SARS-CoV-2 antivirals, such as Paxlovid, has ushered in a new era of the COVID-19 pandemic. Emergence of new variants, as well as selective pressure imposed by antiviral drugs themselves, raise concern for potential escape mutations in key drug binding motifs. To determine the potential emergence of antiviral resistance in globally circulating isolates and its implications for the clinical response to the COVID-19 pandemic, sequencing of SARS-CoV-2 viral isolates before, during, and after the introduction of new antiviral treatments is critical. The infrastructure built herein for active genetic surveillance of Mpro evolution and emergent mutations will play an important role in assessing potential antiviral resistance as the pandemic progresses and Mpro inhibitors are introduced. We anticipate our framework to be the starting point in a larger effort for global monitoring of the SARS-CoV-2 Mpro mutational landscape.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-476644

RESUMO

New variants of SARS-CoV-2 with potential for enhanced transmission, replication, and immune evasion capabilities continue to emerge causing reduced vaccine efficacy and/or treatment failure. As of January 2021, the WHO has defined five variants of concern (VOC): B.1.1.7 (Alpha, ), B.1.351 (Beta, {beta}), P.1 (Gamma, {gamma}), B.1.617.2 (Delta, {delta}), and B.1.1.529 (Omicron, o). To provide a therapeutic option for the treatment of COVID-19 and variants, Nirmatrelvir, the antiviral component of PAXLOVID, an oral outpatient treatment recently authorized for conditional or emergency use treatment of COVID-19, was developed to inhibit SARS-CoV-2 replication. Nirmatrelvir (PF-07321332) is a specific inhibitor of coronavirus main protease (Mpro, also referred to as 3CLpro), with potent antiviral activity against several human coronaviruses, including SARS-CoV-2, SARS-CoV, and MERS (Owen et al, Science 2021. doi: 10.1126/science.abl4784). Here, we evaluated PF-07321332 against the five SARS-CoV-2 VOC (, {beta}, {gamma}, {delta},, o) and two Variants of Interest or VOI, C.37 ({lambda}) and B.1.621 (), using qRT-PCR in VeroE6 cells lacking the P-glycoprotein (Pgp) multidrug transporter gene (VeroE6 P-gp knockout cells). Nirmatrelvir potently inhibited USA-WA1/2020 strain, and , {beta}, {gamma}, {lambda}, {delta}, , and o variants in VeroE6 P-gp knockout cells with mean EC50 values 38.0 nM, 41.0 nM, 127.2 nM, 24.9 nM, 21.2 nM, 15.9 nM, 25.7 nM and 16.2 nM, respectively. Sequence analysis of the Mpro encoded by the variants showed ~100% identity of active site amino acid sequences, reflecting the essential role of Mpro during viral replication leading to ability of Nirmatrelvir to exhibit potent activity across all the variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...