Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2202, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485927

RESUMO

Viral fusion proteins facilitate cellular infection by fusing viral and cellular membranes, which involves dramatic transitions from their pre- to postfusion conformations. These proteins are among the most protective viral immunogens, but they are metastable which often makes them intractable as subunit vaccine targets. Adapting a natural enzymatic reaction, we harness the structural rigidity that targeted dityrosine crosslinks impart to covalently stabilize fusion proteins in their native conformations. We show that the prefusion conformation of respiratory syncytial virus fusion protein can be stabilized with two engineered dityrosine crosslinks (DT-preF), markedly improving its stability and shelf-life. Furthermore, it has 11X greater potency as compared with the DS-Cav1 stabilized prefusion F protein in immunogenicity studies and overcomes immunosenescence in mice with simply a high-dose formulation on alum.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Tirosina/análogos & derivados , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Tirosina/metabolismo , Proteínas Virais de Fusão , Infecções por Vírus Respiratório Sincicial/prevenção & controle
2.
J Virol ; 82(18): 9115-22, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18614628

RESUMO

Pathogenic hantaviruses replicate within human endothelial cells and cause two diseases, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. In order to replicate in endothelial cells pathogenic hantaviruses inhibit the early induction of beta interferon (IFN-beta). Expression of the cytoplasmic tail of the pathogenic NY-1 hantavirus Gn protein is sufficient to inhibit RIG-I- and TBK1-directed IFN responses. The formation of TBK1-TRAF3 complexes directs IRF-3 phosphorylation, and both IRF-3 and NF-kappaB activation are required for transcription from the IFN-beta promoter. Here we report that the NY-1 virus (NY-1V) Gn tail inhibits both TBK1-directed NF-kappaB activation and TBK1-directed transcription from promoters containing IFN-stimulated response elements. The NY-1V Gn tail coprecipitated TRAF3 from cellular lysates, and analysis of TRAF3 deletion mutants demonstrated that the TRAF3 N terminus is sufficient for interacting with the NY-1V Gn tail. In contrast, the Gn tail of the nonpathogenic hantavirus Prospect Hill virus (PHV) failed to coprecipitate TRAF3 or inhibit NF-kappaB or IFN-beta transcriptional responses. Further, expression of the NY-1V Gn tail blocked TBK1 coprecipitation of TRAF3 and infection by NY-1V, but not PHV, blocked the formation of TBK1-TRAF3 complexes. These findings indicate that the NY-1V Gn cytoplasmic tail forms a complex with TRAF3 which disrupts the formation of TBK1-TRAF3 complexes and downstream signaling responses required for IFN-beta transcription.


Assuntos
Citoplasma/metabolismo , Produtos do Gene env/metabolismo , Interferon beta/antagonistas & inibidores , Orthohantavírus/patogenicidade , Proteínas Serina-Treonina Quinases/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Animais , Linhagem Celular , Precipitação Química , Chlorocebus aethiops , Produtos do Gene env/genética , Orthohantavírus/classificação , Orthohantavírus/genética , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Rim/citologia , Rim/virologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fator 3 Associado a Receptor de TNF/genética , Células Vero
3.
J Virol ; 80(19): 9676-86, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16973572

RESUMO

Hantaviruses cause two diseases with prominent vascular permeability defects, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. All hantaviruses infect human endothelial cells, although it is unclear what differentiates pathogenic from nonpathogenic hantaviruses. We observed dramatic differences in interferon-specific transcriptional responses between pathogenic and nonpathogenic hantaviruses at 1 day postinfection, suggesting that hantavirus pathogenesis may in part be determined by viral regulation of cellular interferon responses. In contrast to pathogenic NY-1 virus (NY-1V) and Hantaan virus (HTNV), nonpathogenic Prospect Hill virus (PHV) elicits early interferon responses following infection of human endothelial cells. We determined that PHV replication is blocked in human endothelial cells and that RNA and protein synthesis by PHV, but not NY-1V or HTNV, is inhibited at 2 to 4 days postinfection. The addition of antibodies to beta interferon (IFN-beta) blocked interferon-directed MxA induction by >90% and demonstrated that hantavirus infection induces the secretion of IFN-beta from endothelial cells. Coinfecting endothelial cells with NY-1V and PHV resulted in a 60% decrease in the induction of interferon-responsive MxA transcripts by PHV and further suggested the potential for NY-1V to regulate early IFN responses. Expression of the NY-1V G1 cytoplasmic tail inhibited by >90% RIG-I- and downstream TBK-1-directed transcription from interferon-stimulated response elements or beta-interferon promoters in a dose-dependent manner. In contrast, expression of the NY-1V nucleocapsid or PHV G1 tail had no effect on RIG-I- or TBK-1-directed transcriptional responses. Further, neither the NY-1V nor PHV G1 tails inhibited transcriptional responses directed by a constitutively active form of interferon regulatory factor 3 (IRF-3 5D), and IRF-3 is a direct target of TBK-1 phosphorylation. These findings indicate that the pathogenic NY-1V G1 protein regulates cellular IFN responses upstream of IRF-3 phosphorylation at the level of the TBK-1 complex. These findings further suggest that the G1 cytoplasmic tail contains a virulence element which determines the ability of hantaviruses to bypass innate cellular immune responses and delineates a mechanism for pathogenic hantaviruses to successfully replicate within human endothelial cells.


Assuntos
Citoplasma/metabolismo , Interferons/metabolismo , Orthohantavírus/patogenicidade , Proteínas Serina-Treonina Quinases/metabolismo , RNA Helicases/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Chlorocebus aethiops , Farmacorresistência Viral , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP/genética , Orthohantavírus/classificação , Orthohantavírus/fisiologia , Humanos , Fator Regulador 3 de Interferon/genética , Interferons/genética , Cinética , Dados de Sequência Molecular , Proteínas de Resistência a Myxovirus , Fosforilação , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , Alinhamento de Sequência , Transcrição Gênica/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...