Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(3): 1786-1797, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732226

RESUMO

Ultrafast semiconductor disk lasers (SDLs) passively modelocked using semiconductor saturable absorbers mirrors (SESAMs) generate optical frequency combs (OFCs) with gigahertz line spacings - a regime where solid-state and fiber lasers struggle with geometrical and Q-switching limitations. We stabilized both the frequency comb spacing and the offset without any additional external optical amplification or pulse compression. The overall noise performance is competitive with other gigahertz OFCs. A SESAM-modelocked vertical external-cavity surface-emitting laser (VECSEL) at a center wavelength around 1 µm generates 122-fs pulses with 160 mW average output power and we only needed 17-pJ pulse energy coupled into a silicon nitride (Si3N4) waveguide for supercontinuum generation (SCG) and OFC offset stabilization.

2.
Opt Lett ; 44(1): 25-28, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30645536

RESUMO

With a modelocked integrated external-cavity surface emitting laser (MIXSEL) we achieved a pulse duration of 144 fs. The MIXSEL belongs to the family of optically pumped semiconductor disk lasers. The MIXSEL operates at a center wavelength of 1033 nm with a 13-nm full width at half maximum optical bandwidth, at a pulse repetition rate of 2.73 GHz, and at an average output power of 30 mW. This new record result was obtained with an optimized multipair dielectric top-coating, a large bandgap AlAsxP1-x material for strain compensation, a nonperiodic InGaAs quantum well gain structure, and an improved thermal management.

3.
Opt Express ; 25(19): 22519-22536, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-29041561

RESUMO

We present a high-peak-power SESAM-modelocked thin-disk laser (TDL) based on the gain material Yb-doped lutetia (Yb:Lu2O3), which exceeds a peak-power of 10 MW for the first time. We generate pulses as short as 534 fs with an average power of 90 W and a peak power of 10.1 MW, and in addition a peak power as high as 12.3 MW with 616-fs pulses and 82-W average power. The center lasing wavelength is 1033 nm and the pulse repetition rates are around 10 MHz. We discuss and explain the current limitations with numerical models, which show that the current peak power is limited in soliton modelocking by the interplay of the gain bandwidth and the induced absorption in the SESAM with subsequent thermal lensing effects. We use our numerical model which is validated by the current experimental results to discuss a possible road map to scale the peak power into the 100-MW regime and at the same time reduce the pulse duration further to sub-200 fs. We consider Yb:Lu2O3 as currently the most promising gain material for the combination of high peak power and short pulse duration in the thin-disk-laser geometry.

4.
Opt Express ; 25(6): 6402-6420, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28380991

RESUMO

Compact optically pumped passively modelocked semiconductor disk lasers (SDLs) based on active quantum wells (QWs) such as vertical external-cavity surface-emitting lasers (VECSELs) or modelocked integrated external-cavity surface-emitting lasers (MIXSELs) are wavelength-versatile sources that offer a unique combination of gigahertz pulse repetition rates and short pulse durations. In this paper, we present record-short pulses of 184 fs from a gigahertz MIXSEL emitting at a center wavelength of 1048 nm. This result comes at the expense of low optical-to-optical pump efficiency (<1%) and average output power limited to 115 mW. We experimentally observe that shorter pulses significantly reduce the macroscopic gain saturation fluence and develop a QW model based on rate equations to reproduce the gain saturation behavior and quantitatively explain the VECSEL and MIXSEL modelocking performances. We identify spectral hole burning as the main cause of the reduced gain at shorter pulse durations, which in combination with the short lifetime of the excited carriers strongly reduces the optical pump efficiency. Our better understanding will help to address these limitations in future ultrafast SDL designs.

5.
Opt Express ; 24(24): 27587-27599, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906330

RESUMO

We present semiconductor saturable absorber mirrors (SESAMs) that can potentially support femtosecond pulses from ultrafast thin disk lasers (TDLs) with high average power approaching the kW-power level and high pulse energy in the range of 100 µJ to 1 mJ at megahertz pulse repetition rates. For high-power operation, the SESAM parameters will ultimately limit the shortest pulse duration from a soliton mode-locked laser before mode locking instabilities such as multiple pulsing instabilities and continuous wave (cw) breakthrough start to occur. Currently shorter pulses are prevented due to the inverse saturable absorption that becomes stronger with shorter pulses and results in a shift of the "rollover" of the nonlinear SESAM reflectivity towards lower fluences. Here we discuss a novel SESAM design that addresses these issues and can be grown by metal-organic vapor phase epitaxy (MOVPE), an attractive epitaxial growth technology for manufacturing.

6.
Opt Express ; 24(10): 10512-26, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409874

RESUMO

We present a thorough investigation of surface deformation and thermal properties of high-damage threshold large-area semiconductor saturable absorber mirrors (SESAMs) designed for kilowatt average power laser oscillators. We compare temperature rise, thermal lensing, and surface deformation of standard SESAM samples and substrate-removed SESAMs contacted using different techniques. We demonstrate that for all cases the thermal effects scale linearly with the absorbed power, but the contacting technique critically affects the strength of the temperature rise and the thermal lens of the SESAMs (i.e. the slope of the linear change). Our best SESAMs are fabricated using a novel substrate-transfer direct bonding technique and show excellent surface flatness (with non-measureable radii of curvature (ROC), compared to astigmatic ROCs of up to 10 m for standard SESAMs), order-of-magnitude improved heat removal, and negligible deformation with absorbed power. This is achieved without altering the saturation behavior or the recovery parameters of the samples. These SESAMs will be a key enabling component for the next generation of kilowatt-level ultrafast oscillators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...