Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068064

RESUMO

This research aims to examine how a radial graded porosity distribution affects the elastic modulus by conducting simulations on Ti-based alloy foams with face-centered cubic and body-centered cubic crystal structures. Four types of foams were analyzed; commercially pure-Ti, Ti-13Ta-6Mn (TTM), Ti-13Ta-(TT) and Ti-13Ta-6Sn (TTS), (all in at.%). Four radial graded porosity distribution configurations were modeled and simulated using the finite element analysis (FEA). The radial graded porosity distribution configurations were generated using a Material Designer (Ansys) with a pore range of 200 to 600 µm. These radial graded porosity distributions had average porosity values of 0, 20, 30 and 40%. The consolidated samples that were obtained through a powder metallurgy technique in two step samples were synthesized using a powder metallurgy technique, with the elastic moduli values of the aforementioned Ti based alloys being measured by ultrasound using ~110, ~69, ~61 and ~65 GPa, respectively. The results showed that the modulus decreased as a function of porosity level in all simulated materials. The TTM, TT and TTS foams, with average porosities of 20, 30 and 40%, exhibited an modulus smaller than 30 GPa, which is a requirement to be used as a biomaterial in human bones. The TT foams showed the lowest modulus when compared to the other foams. Finally, certain theoretical models were used to obtain the modulus, the best being; the Gibson-Ashby model (α = 1 and n = 2.5) for the cp-Ti foams and Knudsen-Spriggs model (b = 3.06) for the TTM, TT and TTS foams.

2.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687217

RESUMO

This study explored the effects of solution pH, biosorbent dose, contact time, and temperature on the Pb(II) biosorption process of natural and chemically treated leaves of A. compressa K. (Raw-AC and AC-OH, respectively). The results show that the surface characteristics of Raw-AC changed following alkali treatment. FT-IR analysis showed the presence of various functional groups on the surface of the biosorbent, which were binding sites for the Pb(II) biosorption. The nonlinear pseudo-second-order kinetic model was found to be the best fitted to the experimental kinetic data. Adsorption equilibrium data at pH = 2-6, biosorbents dose from 5 to 20 mg/L, and temperature from 300.15 to 333.15 K were adjusted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models. The results show that the adsorption capacity was enhanced with the increase in the solution pH and diminished with the increase in the temperature and biosorbent dose. It was also found that AC-OH is more effective than Raw-AC in removing Pb(II) from aqueous solutions. This was also confirmed using artificial neural networks and genetic algorithms, where it was demonstrated that the improvement was around 57.7%. The nonlinear Langmuir isotherm model was the best fitted, and the maximum adsorption capacities of Raw-AC and AC-OH were 96 mg/g and 170 mg/g, respectively. The removal efficiency of Pb(II) was maintained approximately after three adsorption and desorption cycles using 0.5 M HCl as an eluent. This research delved into the impact of solution pH, biosorbent characteristics, and operational parameters on Pb(II) biosorption, offering valuable insights for engineering education by illustrating the practical application of fundamental chemical and kinetic principles to enhance the design and optimization of sustainable water treatment systems.


Assuntos
Ardisia , Chumbo , Espectroscopia de Infravermelho com Transformada de Fourier , Redes Neurais de Computação , Folhas de Planta , Convulsões
3.
Materials (Basel) ; 16(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297198

RESUMO

This work aims to perform a computational analysis on the influence that microstructure and porosity have on the elastic modulus of Ti-6Al-4V foams used in biomedical applications with different α/ß-phase ratios. The work is divided into two analyses, first the influence that the α/ß-phase ratio has and second the effects that porosity and α/ß-phase ratio have on the elastic modulus. Two microstructures were analyzed: equiaxial α-phase grains + intergranular ß-phase (microstructure A) and equiaxial ß-phase grains + intergranular α-phase (microstructure B). The α/ß-phase ratio was variated from 10 to 90% and the porosity from 29 to 56%. The simulations of the elastic modulus were carried out using finite element analysis (FEA) using ANSYS software v19.3. The results were compared with experimental data reported by our group and those found in the literature. The ß-phase amount and porosity have a synergic effect on the elastic modulus, for example, when the foam has a porosity of 29 with 0% ß-phase, and it has an elastic modulus of ≈55 GPa, but when the ß-phase amount increases to 91%, the elastic modulus decreases as low as 38 GPa. The foams with 54% porosity have values smaller than 30 GPa for all the ß-phase amounts.

4.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35745918

RESUMO

The contamination of water resources with heavy metals is a very serious concern that demands prompt and effective attention due to the serious health risks caused by these contaminants. The synthesis and ring-opening metathesis polymerization (ROMP) of norbornene dicarboximides bearing thiol pendant groups, specifically, N-4-thiophenyl-exo-norbornene-5,6-dicarboximide (1a), N-4-(methylthio)phenyl-exo-norbornene-5,6-dicarboximide (1b) and N-4-(trifluoromethylthio)phenyl-exo-norbornene-5,6-dicarboximide (1c), as well as their assessment for the removal of heavy metals from aqueous systems, is addressed in this work. The polymers were characterized by NMR, SEM and TGA, among others. Single and multicomponent aqueous solutions of Pb2+, Cd2+ and Ni2+ were employed to perform both kinetic and isothermal adsorption studies taking into account several experimental parameters, for instance, the initial metal concentration, the contact time and the mass of the polymer. In general, the adsorption kinetic data fit the pseudo-second-order model more efficiently, while the adsorption isotherms fit the Freundlich and Langmuir models. The maximum metal uptakes were 53.7 mg/g for Pb2+, 43.8 mg/g for Cd2+ and 29.1 mg/g for Ni2+ in the SH-bearing polymer 2a, 46.4 mg/g for Pb2+, 32.9 mg/g for Cd2+ and 27.1 mg/g for Ni2+ in the SCH3-bearing polymer 2b and 40.3 mg/g for Pb2+, 35.9 mg/g for Cd2+ and 27.8 mg/g for Ni2+ in the SCF3-bearing polymer 2c, correspondingly. The better performance of polymer 2a for the metal uptake was ascribed to the lower steric hindrance and higher hydrophilicity imparted by -SH groups to the polymer. The results show that these thiol-functionalized polymers are effective adsorbents of heavy metal ions from aqueous media.

5.
Environ Sci Pollut Res Int ; 28(37): 52014-52031, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33997932

RESUMO

The occurrence of heavy metals in the natural aquatic systems arising from anthropogenic sources is an issue of global and environmental concern because of their extremely harmful effects to living beings even in rather low concentrations. The synthesis and ring-opening metathesis polymerization (ROMP) of novel norbornene dicarboximides bearing highly aromatic pendant groups, specifically, N-4-tritylphenyl-norbornene-5,6-dicarboximide (2a) and N-2,4,6-(triphenyl)phenyl-norbornene-5,6-dicarboximide (2b), their hydrogenation and further polymer sulfonation to render them adsorbents for the uptake of heavy metal ions from water is reported in this study. The macromolecules were characterized by means of FT-IR, 1H NMR, and thermal analysis, among others. A thoroughly kinetic and isothermal study of adsorption in single and ternary aqueous solutions of Pb2+, Cd2+, and Ni2+ was performed considering several experimental variables for instance initial metal concentration, contact time and solution pH. In general, the experimental data were adjusted more efficiently to the pseudo-second order kinetic model and to the Freundlich isotherm model, respectively. The maximum removal amounts were found to be 55.7 mg/g for Pb2+, 33.9 mg/g for Cd2+, and 10.2 mg/g for Ni2+ in the sulfonated trityl-bearing polymer 5a while those found for the sulfonated triphenyl-bearing polymer 5b were 31.5 mg/g for Pb2+, 26.6 mg/g for Cd2+, and 7.0 mg/g for Ni2+, respectively. The higher heavy metal removal capacity of polymer 5a was attributed to its also higher degree of sulfonation. The outcomes indicate that these novel sulfonic acid containing polymer-based adsorbents are effective for the uptake of heavy metallic elements from water.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Cádmio/análise , Concentração de Íons de Hidrogênio , Cinética , Plásticos , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Poluentes Químicos da Água/análise
6.
Materials (Basel) ; 13(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023894

RESUMO

Sheets of 5754-aluminum alloy processed by a modified repetitive corrugation and straightening (RCS) process were tested in order to measure their formability. For this purpose, forming limit curves were derived. They showed that the material forming capacity decreased after being processed by RCS. However, they kept good formability in the initial stages of the RCS process. The formability study was complemented with microstructural analysis (derivation of texture) and mechanical tests to obtain the strain-rate sensitivity. The texture analysis was done by employing X-ray diffraction, obtaining pole figures, and the orientation distribution function. It was noticed that the initial texture was conserved after successive RCS passes, but the intensity dropped. RCS process did not induce ß-fiber, contrary to common deformation process. The strain-rate sensitivity coefficient was measured through tensile tests at different temperatures and strain rates; the coefficient of the samples processed after one and two passes were still relatively high, indicating the capacity to delay necking, in agreement with the good formability observed in the initial passes of the RCS process.

7.
Polymers (Basel) ; 13(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396908

RESUMO

The future availability of synthetic polymers is compromised due to the continuous depletion of fossil reserves; thus, the quest for sustainable and eco-friendly specialty polymers is of the utmost importance to ensure our lifestyle. In this regard, this study reports on the use of oleic acid as a renewable source to develop new ionomers intended for proton exchange membranes. Firstly, the cross-metathesis of oleic acid was conducted to yield a renewable and unsaturated long-chain aliphatic dicarboxylic acid, which was further subjected to polycondensation reactions with two aromatic diamines, 4,4'-(hexafluoroisopropylidene)bis(p-phenyleneoxy)dianiline and 4,4'-diamino-2,2'-stilbenedisulfonic acid, as comonomers for the synthesis of a series of partially renewable aromatic-aliphatic polyamides with an increasing degree of sulfonation (DS). The polymer chemical structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (1H, 13C, and 19F NMR) spectroscopy, which revealed that the DS was effectively tailored by adjusting the feed molar ratio of the diamines. Next, we performed a study involving the ion exchange capacity, the water uptake, and the proton conductivity in membranes prepared from these partially renewable long-chain polyamides, along with a thorough characterization of the thermomechanical and physical properties. The highest value of the proton conductivity determined by electrochemical impedance spectroscopy (EIS) was found to be 1.55 mS cm-1 at 30 °C after activation of the polymer membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...