Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(2): 1963-1973, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35107970

RESUMO

Here, we develop a framework for assembly, understanding, and application of functional emulsions stabilized by few-layer pristine two-dimensional (2D) nanosheets. Liquid-exfoliated graphene and MoS2 are demonstrated to stabilize emulsions at ultralow nanosheet volume fractions, approaching the minimum loading achievable with 2D materials. These nanosheet-stabilized emulsions allow controlled droplet deposition free from the coffee ring effect to facilitate single-droplet devices from minute quantities of material or assembly into large-area films with high network conductivity. To broaden the range of compositions and subsequent applications, an understanding of emulsion stability and orientation in terms of surface energy of the three phases is developed. Importantly, this model facilitates determination of the surface energies of the nanosheets themselves and identifies strategies based on surface tension and pH to allow design of emulsion structures. Finally, this approach is used to prepare conductive silicone emulsion composites with a record-low loading level and excellent electromechanical sensitivity. The versatility of these nanosheet-stabilized emulsions illustrates their potential for low-loading composites, thin-film formation and surface energy determination, and the design of functional structures for a range of segregated network applications.

2.
iScience ; 24(5): 102456, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34013170

RESUMO

Carbon suspension electrodes are promising for flow-assisted electrochemical energy storage systems. They serve as flowable electrodes in electrolyte solutions of flow batteries, or flow capacitors. They can also be used for other applications such as capacitive deionization of water. However, developments of such suspensions remain challenging. The suspensions should combine low viscosity and high electronic conductivity for optimized performances. In this work, we report a flowable aqueous carbon dispersion which exhibits a viscosity of only 2 Pa.s at a shear rate of 5 s-1 for a concentration of particles of 7 wt%. This suspension displays an electronic conductivity of 65 mS/cm, nearly two orders of magnitude greater than previously investigated related materials. The investigated suspensions are stabilized by sodium alginate and arabic gum in the presence of ammonium sulfate. Their use in flowable systems for the storage and discharge of electrical charges is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...