Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Cell Biol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531762

RESUMO

Alternative transcription start site usage (ATSS) is a widespread regulatory strategy that enables genes to choose between multiple genomic loci for initiating transcription. This mechanism is tightly controlled during development and is often altered in disease states. In this review, we examine the growing evidence highlighting a role for transcription start sites (TSSs) in the regulation of mRNA isoform selection during and after transcription. We discuss how the choice of transcription initiation sites influences RNA processing and the importance of this crosstalk for cell identity and organism function. We also speculate on possible mechanisms underlying the integration of transcriptional and post-transcriptional processes.

2.
STAR Protoc ; 4(4): 102505, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37733595

RESUMO

We present a detailed protocol for sequencing full-length mRNA isoforms using the Oxford nanopore long-read sequencing technology. We describe steps for poly(A) RNA isolation, library preparation, and cDNA size selection. We then detail procedures for sequencing and processing and a computational framework to identify exon couplings and assign mRNA 5' ends and 3' ends to each other. Our approach enables the identification of links between transcription initiation and co-transcriptional RNA processing events. For complete details on the use and execution of this protocol, please refer to Alfonso-Gonzalez et al.1.


Assuntos
Processamento Pós-Transcricional do RNA , Processamento Pós-Transcricional do RNA/genética , DNA Complementar , Éxons , Biblioteca Gênica , RNA Mensageiro/genética
3.
Cell ; 186(11): 2438-2455.e22, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37178687

RESUMO

The generation of distinct messenger RNA isoforms through alternative RNA processing modulates the expression and function of genes, often in a cell-type-specific manner. Here, we assess the regulatory relationships between transcription initiation, alternative splicing, and 3' end site selection. Applying long-read sequencing to accurately represent even the longest transcripts from end to end, we quantify mRNA isoforms in Drosophila tissues, including the transcriptionally complex nervous system. We find that in Drosophila heads, as well as in human cerebral organoids, 3' end site choice is globally influenced by the site of transcription initiation (TSS). "Dominant promoters," characterized by specific epigenetic signatures including p300/CBP binding, impose a transcriptional constraint to define splice and polyadenylation variants. In vivo deletion or overexpression of dominant promoters as well as p300/CBP loss disrupted the 3' end expression landscape. Our study demonstrates the crucial impact of TSS choice on the regulation of transcript diversity and tissue identity.


Assuntos
Processamento Alternativo , Isoformas de RNA , Sítio de Iniciação de Transcrição , Humanos , Poliadenilação , Regiões Promotoras Genéticas , Isoformas de RNA/metabolismo , RNA Mensageiro/metabolismo
4.
Mol Cell ; 80(1): 156-163.e6, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007255

RESUMO

The production of alternative RNA variants contributes to the tissue-specific regulation of gene expression. In the animal nervous system, a systematic shift toward distal sites of transcription termination produces transcript signatures that are crucial for neuron development and function. Here, we report that, in Drosophila, the highly conserved protein ELAV globally regulates all sites of neuronal 3' end processing and directly binds to proximal polyadenylation sites of target mRNAs in vivo. We uncover an endogenous strategy of functional gene rescue that safeguards neuronal RNA signatures in an ELAV loss-of-function context. When not directly repressed by ELAV, the transcript encoding the ELAV paralog FNE acquires a mini-exon, generating a new protein able to translocate to the nucleus and rescue ELAV-mediated alternative polyadenylation and alternative splicing. We propose that exon-activated functional rescue is a more widespread mechanism that ensures robustness of processes regulated by a hierarchy, rather than redundancy, of effectors.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas ELAV/metabolismo , Éxons/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Masculino , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
5.
Mech Dev ; 154: 73-81, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29753813

RESUMO

The Fos oncogene gene family is evolutionarily conserved throughout Eukarya. Fos proteins characteristically have a leucine zipper and a basic region with a helix-turn-helix motif that binds DNA. In vertebrates, there are several Fos homologs. They can homo- or hetero-dimerize via the leucine zipper domain. Fos homologs coupled with other transcription factors, like Jun oncoproteins, constitute the Activator Protein 1 (AP-1) complex. From its original inception as an oncogene, the subsequent finding that they act as transcription factors binding DNA sequences known as TRE, to the realization that they are activated in many different scenarios, and to loss-of-function analysis, the Fos proteins have traversed a multifarious path in development and physiology. They are instrumental in 'immediate early genes' responses, and activated by a seemingly myriad assemblage of different stimuli. Yet, the majority of these studies were basically gain-of-function studies, since it was thought that Fos genes would be cell lethal. Loss-of-function mutations in vertebrates were recovered later, and were not cell lethal. In fact, c-fos null mutations are viable with developmental defects (osteopetrosis and myeloid lineage abnormalities). It was then hypothesized that vertebrate genomes exhibit partial redundancy, explaining the 'mild' phenotypes, and complicating assessment of complete loss-of-function phenotypes. Due to its promiscuous activation, fos genes (especially c-fos) are now commonly used as markers for cellular responses to stimuli. fos homologs high sequence conservation (including Drosophila) is advantageous as it allows critical assessment of fos genes functions in this genetic model. Drosophila melanogaster contains only one fos homolog, the gene kayak. kayak mutations are lethal, and allow study of all the processes where fos is required. The kayak locus encodes several different isoforms, and is a pleiotropic gene variously required for development involving cell shape changes. In general, fos genes seem to primarily activate programs involved in cellular architectural rearrangements and cell shape changes.


Assuntos
Mutação/genética , Proteínas Proto-Oncogênicas c-fos/genética , Animais , DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Isoformas de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...