Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 9: 34, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27004553

RESUMO

BACKGROUND: Neonatal astrocytes are diverse in origin, and undergo dramatic change in gene expression, morphological differentiation and  syncytial networking throughout development. Neonatal astrocytes also play multifaceted roles in neuronal circuitry establishment. However, the extent to which neonatal astrocytes differ from their counterparts in the adult brain remains unknown. RESULTS: Based on ALDH1L1-eGFP expression or sulforhodamine 101 staining, neonatal astrocytes at postnatal day 1-3 can be reliably identified in hippocampal stratum radiatum. They exhibit a more negative resting membrane potential (V M), -85 mV, than mature astrocytes, -80 mV and a variably rectifying whole-cell current profile due to complex expression of voltage-gated outward transient K(+) (IKa), delayed rectifying K(+) (IKd) and inward K(+) (IKin) conductances. Differing from NG2 glia, depolarization-induced inward Na(+) currents (INa) could not be detected in neonatal astrocytes. A quasi-physiological V M of -69 mV was retained when inwardly rectifying Kir4.1 was inhibited by 100 µM Ba(2+) in both wild type and TWIK-1/TREK-1 double gene knockout astrocytes, indicating expression of additional leak K(+) channels yet unknown. In dual patch recording, electrical coupling was detected in 74 % (14/19 pairs) of neonatal astrocytes with largely variable coupling coefficients. The increasing gap junction coupling progressively masked the rectifying K(+) conductances to account for an increasing number of linear voltage-to-current relationship passive astrocytes (PAs). Gap junction inhibition, by 100 µM meclofenamic acid, substantially reduced membrane conductance and converted all the neonatal PAs to variably rectifying astrocytes. The low density expression of leak K(+) conductance in neonatal astrocytes corresponded  to a ~50 % less K(+) uptake capacity compared to adult astrocytes. CONCLUSIONS: Neonatal astrocytes predominantly express a variety of rectifying K(+) conductances, form discrete cell-to-cell gap junction coupling and are deficient in K(+) homeostatic capacity.


Assuntos
Astrócitos/metabolismo , Fenômenos Eletrofisiológicos , Hipocampo/metabolismo , Animais , Bário/metabolismo , Junções Comunicantes/metabolismo , Ativação do Canal Iônico , Cinética , Camundongos Endogâmicos C57BL , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
2.
Front Cell Neurosci ; 10: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26869883

RESUMO

We have recently shown that a linear current-to-voltage (I-V) relationship of membrane conductance (passive conductance) reflects the intrinsic property of K(+) channels in mature astrocytes. While passive conductance is known to underpin a highly negative and stable membrane potential (V M) essential for the basic homeostatic function of astrocytes, a complete repertoire of the involved K(+) channels remains elusive. TREK-1 two-pore domain K(+) channel (K2P) is highly expressed in astrocytes, and covalent association of TREK-1 with TWIK-1, another highly expressed astrocytic K2P, has been reported as a mechanism underlying the trafficking of heterodimer TWIK-1/TREK-1 channel to the membrane and contributing to astrocyte passive conductance. To decipher the individual contribution of TREK-1 and address whether the appearance of passive conductance is conditional to the co-expression of TWIK-1/TREK-1 in astrocytes, TREK-1 single and TWIK-1/TREK-1 double gene knockout mice were used in the present study. The relative quantity of mRNA encoding other astrocyte K(+) channels, such as Kir4.1, Kir5.1, and TREK-2, was not altered in these gene knockout mice. Whole-cell recording from hippocampal astrocytes in situ revealed no detectable changes in astrocyte passive conductance, V M, or membrane input resistance (R in) in either kind of gene knockout mouse. Additionally, TREK-1 proteins were mainly located in the intracellular compartments of the hippocampus. Altogether, genetic deletion of TREK-1 alone or together with TWIK-1 produced no obvious alteration in the basic electrophysiological properties of hippocampal astrocytes. Thus, future research focusing on other K(+) channels may shed light on this long-standing and important question in astrocyte physiology.

3.
Glia ; 64(2): 214-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26435164

RESUMO

Astrocytes are extensively coupled through gap junctions into a syncytium. However, the basic role of this major brain network remains largely unknown. Using electrophysiological and computational modeling methods, we demonstrate that the membrane potential (VM) of an individual astrocyte in a hippocampal syncytium, but not in a single, freshly isolated cell preparation, can be well-maintained at quasi-physiological levels when recorded with reduced or K(+) free pipette solutions that alter the K(+) equilibrium potential to non-physiological voltages. We show that an astrocyte's associated syncytium provides powerful electrical coupling, together with ionic coupling at a lesser extent, that equalizes the astrocyte's VM to levels comparable to its neighbors. Functionally, this minimizes VM depolarization attributable to elevated levels of local extracellular K(+) and thereby maintains a sustained driving force for highly efficient K(+) uptake. Thus, gap junction coupling functions to achieve isopotentiality in astrocytic networks, whereby a constant extracellular environment can be powerfully maintained for crucial functions of neural circuits.


Assuntos
Astrócitos/fisiologia , Junções Comunicantes/fisiologia , Potenciais da Membrana/fisiologia , Animais , Cátions Monovalentes/metabolismo , Células Cultivadas , Espaço Extracelular/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/fisiologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiologia , Potássio/metabolismo , Técnicas de Cultura de Tecidos
4.
Mol Neurobiol ; 53(9): 6169-6182, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26553349

RESUMO

TWIK-1 two-pore domain K+ channels are highly expressed in mature hippocampal astrocytes. While the TWIK-1 activity is readily detectable on astrocyte membrane, the majority of channels are retained in the intracellular compartments, which raises an intriguing question of whether the membrane TWIK-1 channels could be dynamically regulated for functions yet unknown. Here, the regulation of TWIK-1 membrane expression by Gi/Go-coupled metabotropic glutamate receptor 3 (mGluR3) and its functional impact on ammonium uptake has been studied. Activation of mGluR3 induced a marked translocation of TWIK-1 channels from the cytoplasm to the membrane surface. Consistent with our early observation that membrane TWIK-1 behaves as nonselective monovalent cation channel, mGluR3-mediated TWIK-1 membrane expression was associated with a depolarizing membrane potential (V M). As TWIK-1 exhibits a discernibly high permeability to ammonium (NH4+), a critical substrate in glutamate-glutamine cycle for neurotransmitter replenishment, regulation of NH4+ uptake capacity by TWIK-1 membrane expression was determined by response of astrocyte V M to bath application of 5 mM NH4Cl. Stimulation of mGluR3 potentiated NH4+-induced V M depolarization by ∼30 % in wild type, but not in TWIK-1 knockout astrocytes. Furthermore, activation of mGluR3 mediated a coordinated translocation of TWIK-1 channels with recycling endosomes toward astrocyte membrane and the mGluR3-mediated potentiation of NH4+ uptake required a functional Rab-mediated trafficking pathway. Altogether, we demonstrate that the activation of mGluR3 up-regulates the membrane expression of TWIK-1 that in turn enhances NH4+ uptake in astrocytes, a mechanism potentially important for functional coupling of astrocyte glutamate-glutamine cycle with the replenishment of neurotransmitters in neurons.


Assuntos
Compostos de Amônio/metabolismo , Astrócitos/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Hipocampo/citologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Endocitose , Endossomos/metabolismo , Exocitose , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glutamato Metabotrópico/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
5.
J Neurophysiol ; 113(10): 3744-50, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25810481

RESUMO

Mature astrocytes exhibit a linear current-to-voltage K(+) membrane conductance (passive conductance) and an extremely low membrane resistance (Rm) in situ. The combination of these electrophysiological characteristics establishes a highly negative and stable membrane potential that is essential for basic functions, such as K(+) spatial buffering and neurotransmitter uptake. However, astrocytes are coupled extensively in situ. It remains to be determined whether the observed passive behavior and low Rm are attributable to the intrinsic properties of membrane ion channels or to gap junction coupling in functionally mature astrocytes. In the present study, freshly dissociated hippocampal tissues were used as a new model to examine this basic question in young adult animals. The morphologically intact single astrocytes could be reliably dissociated from animals postnatal day 21 and older. At this animal age, dissociated single astrocytes exhibit passive conductance and resting membrane potential similar to those exhibited by astrocytes in situ. To precisely measure the Rm from single astrocytes, dual-patch single-astrocyte recording was performed. We show that dissociated single astrocytes exhibit a low Rm similarly to syncytial coupled astrocytes. Functionally, the symmetric expression of high-K(+) conductance enabled rapid change in the intracellular K(+) concentrations in response to changing K(+) drive force. Altogether, we demonstrate that freshly dissociated tissue preparation is a highly useful model for study of the functional expression and regulation of ion channels, receptors, and transporters in astrocytes and that passive behavior and low Rm are the intrinsic properties of mature astrocytes.


Assuntos
Astrócitos/fisiologia , Junções Comunicantes/fisiologia , Hipocampo/citologia , Potenciais da Membrana/fisiologia , Animais , Biofísica , Estimulação Elétrica , Técnicas In Vitro , Camundongos , Microscopia Confocal , Técnicas de Patch-Clamp , Potássio/metabolismo , Rodaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...