Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Nature ; 629(8010): 10, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693405
2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612934

RESUMO

We establish a general kinetic scheme for the energy transfer and radical-pair dynamics in photosystem I (PSI) of Chlamydomonas reinhardtii, Synechocystis PCC6803, Thermosynechococcus elongatus and Spirulina platensis grown under white-light conditions. With the help of simultaneous target analysis of transient-absorption data sets measured with two selective excitations, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described as a Bulk Chl a in equilibrium with a higher-energy Chl a, one or two Red Chl a and a reaction-center compartment (WL-RC). Three radical pairs (RPs) have been resolved with very similar properties in the four model organisms. The charge separation is virtually irreversible with a rate of ≈900 ns-1. The second rate, of RP1 → RP2, ranges from 70-90 ns-1 and the third rate, of RP2 → RP3, is ≈30 ns-1. Since RP1 and the Red Chl a are simultaneously present, resolving the RP1 properties is challenging. In Chlamydomonas reinhardtii, the excited WL-RC and Bulk Chl a compartments equilibrate with a lifetime of ≈0.28 ps, whereas the Red and the Bulk Chl a compartments equilibrate with a lifetime of ≈2.65 ps. We present a description of the thermodynamic properties of the model organisms at room temperature.


Assuntos
Chlamydomonas reinhardtii , Complexo de Proteína do Fotossistema I , Clorofila A , Transferência de Energia , Cinética
3.
Physiol Plant ; 176(2): e14306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659135

RESUMO

Chlorophyll fluorescence is a ubiquitous tool in basic and applied plant science research. Various standard commercial instruments are available for characterization of photosynthetic material like leaves or microalgae, most of which integrate the overall fluorescence signals above a certain cut-off wavelength. However, wavelength-resolved (fluorescence signals appearing at different wavelengths having different time dependent decay) signals contain vast information required to decompose complex signals and processes into their underlying components that can untangle the photo-physiological process of photosynthesis. Hence, to address this we describe an advanced chlorophyll fluorescence spectrometer - ChloroSpec - allowing three-dimensional simultaneous detection of fluorescence intensities at different wavelengths in a time-resolved manner. We demonstrate for a variety of typical examples that most of the generally used fluorescence parameters are strongly wavelength dependent. This indicates a pronounced heterogeneity and a highly dynamic nature of the thylakoid and the photosynthetic apparatus under actinic illumination. Furthermore, we provide examples of advanced global analysis procedures integrating this three-dimensional signal and relevant information extracted from them that relate to the physiological properties of the organism. This conveniently obtained broad range of data can make ChloroSpec a new standard tool in photosynthesis research.


Assuntos
Clorofila , Fotossíntese , Espectrometria de Fluorescência , Clorofila/metabolismo , Espectrometria de Fluorescência/métodos , Espectrometria de Fluorescência/instrumentação , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Fluorescência , Tilacoides/metabolismo
4.
J Phys Chem B ; 128(15): 3575-3584, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38569137

RESUMO

Observations of low-lying dark states in several photosynthetic complexes challenge our understanding of the mechanisms behind their efficient energy transfer processes. Computational models are necessary for providing novel insights into the nature and function of dark states, especially since these are not directly accessible in spectroscopy experiments. Here, we will focus on signatures of dark-type states in chlorosomes, a light-harvesting complex from green sulfur bacteria well-known for uniting a broad absorption band with very efficient energy transfer. In agreement with experiments, our simulations of two-dimensional electronic spectra capture the ultrafast exciton transfer occurring in 100s of femtoseconds within a single chlorosome cylinder. The sub-100 fs process corresponds to relaxation within the single-excitation manifold in a single chlorosome tube, where all initially created populations in the bright exciton states are quickly transferred to dark-type exciton states. Structural inhomogeneities on the local scale cause a redistribution of the oscillator strength, leading to the emergence of these dark-type exciton states, which dominate ultrafast energy transfer. The presence of the dark-type exciton states suppresses energy loss from an isolated chlorosome via fluorescence quenching, as observed experimentally. Our results further question whether relaxation to dark-exciton states is a leading process or merely competes with transfer to the baseplate within the photosynthetic apparatus of green sulfur bacteria.

5.
Phys Chem Chem Phys ; 26(22): 15856-15867, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38546236

RESUMO

Chlorosomes, the photosynthetic antenna complexes of green sulfur bacteria, are paradigms for light-harvesting elements in artificial designs, owing to their efficient energy transfer without protein participation. We combined magic angle spinning (MAS) NMR, optical spectroscopy and cryogenic electron microscopy (cryo-EM) to characterize the structure of chlorosomes from a bchQ mutant of Chlorobaculum tepidum. The chlorosomes of this mutant have a more uniform composition of bacteriochlorophyll (BChl) with a predominant homolog, [8Ethyl, 12Ethyl] BChl c, compared to the wild type (WT). Nearly complete 13C chemical shift assignments were obtained from well-resolved homonuclear 13C-13C RFDR data. For proton assignments heteronuclear 13C-1H (hCH) data sets were collected at 1.2 GHz spinning at 60 kHz. The CHHC experiments revealed intermolecular correlations between 132/31, 132/32, and 121/31, with distance constraints of less than 5 Å. These constraints indicate the syn-anti parallel stacking motif for the aggregates. Fourier transform cryo-EM data reveal an axial repeat of 1.49 nm for the helical tubular aggregates, perpendicular to the inter-tube separation of 2.1 nm. This axial repeat is different from WT and is in line with BChl syn-anti stacks running essentially parallel to the tube axis. Such a packing mode is in agreement with the signature of the Qy band in circular dichroism (CD). Combining the experimental data with computational insight suggests that the packing for the light-harvesting function is similar between WT and bchQ, while the chirality within the chlorosomes is modestly but detectably affected by the reduced compositional heterogeneity in bchQ.


Assuntos
Bacterioclorofilas , Chlorobi , Chlorobi/genética , Chlorobi/metabolismo , Bacterioclorofilas/química , Mutação , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Microscopia Crioeletrônica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Photosynth Res ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538911

RESUMO

The largest light-harvesting antenna in nature, the chlorosome, is a heterogeneous helical BChl self-assembly that has evolved in green bacteria to harvest light for performing photosynthesis in low-light environments. Guided by NMR chemical shifts and distance constraints for Chlorobaculum tepidum wild-type chlorosomes, the two contrasting packing modes for syn-anti parallel stacks of BChl c to form polar 2D arrays, with dipole moments adding up, are explored. Layered assemblies were optimized using local orbital density functional and plane wave pseudopotential methods. The packing mode with the lowest energy contains syn-anti and anti-syn H-bonding between stacks. It can accommodate R and S epimers, and side chain variability. For this packing, a match with the available EM data on the subunit axial repeat and optical data is obtained with multiple concentric cylinders for a rolling vector with the stacks running at an angle of 21° to the cylinder axis and with the BChl dipole moments running at an angle ߠ∼ 55° to the tube axis, in accordance with optical data. A packing mode involving alternating syn and anti parallel stacks that is at variance with EM appears higher in energy. A weak cross-peak at -6 ppm in the MAS NMR with 50 kHz spinning, assigned to C-181, matches the shift of antiparallel dimers, which possibly reflects a minor impurity-type fraction in the self-assembled BChl c.

7.
Environ Res ; 238(Pt 1): 117134, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714366

RESUMO

The objective of the present study was to review the existing epidemiological and laboratory findings supporting the role of toxic metal exposure in non-alcoholic fatty liver disease (NAFLD). The existing epidemiological studies demonstrate that cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg) exposure was associated both with an increased risk of NAFLD and altered biochemical markers of liver injury. Laboratory studies demonstrated that metal exposure induces hepatic lipid accumulation resulting from activation of lipogenesis and inhibition of fatty acid ß-oxidation due to up-regulation of sterol regulatory element-binding protein 1 (SREBP-1), carbohydrate response element binding protein (ChREBP), peroxisome proliferator-activated receptor γ (PPARγ), and down-regulation of PPARα. Other metabolic pathways involved in this effect may include activation of reactive oxygen species (ROS)/extracellular signal-regulated kinase (ERK) and inhibition of AMP-activated protein kinase (AMPK) signaling. The mechanisms of hepatocyte damage during development of metal-induced hepatic steatosis were shown to involve oxidative stress, endoplasmic reticulum stress, pyroptosis, ferroptosis, and dysregulation of autophagy. Induction of inflammatory response contributing to progression of NAFLD to non-alcoholic steatohepatitis (NASH) upon toxic metal exposure was shown to be mediated by up-regulation of nuclear factor κB (NF-κB) and activation of NRLP3 inflammasome. Moreover, epigenetic effects of the metals, as well as their effect on gut microbiota and gut wall integrity were also shown to mediate their role in NAFLD development. Despite being demonstrated for Cd, Pb, and As, the contribution of these mechanisms into Hg-induced NAFLD is yet to be estimated. Therefore, further studies are required to clarify the intimate mechanisms underlying the relationship between heavy metal and metalloid exposure and NAFLD/NASH to reveal the potential targets for treatment and prevention of metal-induced NAFLD.


Assuntos
Arsênio , Mercúrio , Hepatopatia Gordurosa não Alcoólica , Humanos , Cádmio , Arsênio/metabolismo , Chumbo/metabolismo , Mercúrio/metabolismo , Fígado
8.
iScience ; 26(9): 107650, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680463

RESUMO

We establish a general kinetic scheme for energy transfer and trapping in the photosystem I (PSI) of cyanobacteria grown under white light (WL) or far-red light (FRL) conditions. With the help of simultaneous target analysis of all emission and transient absorption datasets measured in five cyanobacterial strains, we resolved the spectral and kinetic properties of the different species present in PSI. WL-PSI can be described by Bulk Chl a, two Red Chl a, and a reaction center compartment (WL-RC). The FRL-PSI contains two additional Chl f compartments. The lowest excited state of the FRL-RC is downshifted by ≈ 29 nm. The rate of charge separation drops from ≈900 ns-1 in WL-RC to ≈300 ns-1 in FRL-RC. The delayed trapping in the FRL-PSI (≈130 ps) is explained by uphill energy transfer from the Chl f compartments with Gibbs free energies of ≈kBT below that of the FRL-RC.

9.
J Phys Chem B ; 127(34): 7487-7496, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37594912

RESUMO

Chlorosomes from green bacteria perform the most efficient light capture and energy transfer, as observed among natural light-harvesting antennae. Hence, their unique functional properties inspire developments in artificial light-harvesting and molecular optoelectronics. We examine two distinct organizations of the molecular building blocks as proposed in the literature, demonstrating how these organizations alter light capture and energy transfer, which can serve as a mechanism that the bacteria utilize to adapt to changes in light conditions. Spectral simulations of polarization-resolved two-dimensional electronic spectra unravel how changes in the helicity of chlorosomal aggregates alter energy transfer. We show that ultrafast anisotropy decay presents a spectral signature that reveals contrasting energy pathways in different chlorosomes.

10.
J Phys Chem B ; 127(35): 7581-7589, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37611240

RESUMO

The antenna complex of green sulfur bacteria, the chlorosome, is one of the most efficient supramolecular systems for efficient long-range exciton transfer in nature. Femtosecond transient absorption experiments provide new insight into how vibrationally induced quantum overlap between exciton states supports highly efficient long-range exciton transfer in the chlorosome of Chlorobium tepidum. Our work shows that excitation energy is delocalized over the chlorosome in <1 ps at room temperature. The following exciton transfer to the baseplate occurs in ∼3 to 5 ps, in line with earlier work also performed at room temperature, but significantly faster than at the cryogenic temperatures used in previous studies. This difference can be attributed to the increased vibrational motion at room temperature. We observe a so far unknown impact of the excitation photon energy on the efficiency of this process. This dependency can be assigned to distinct optical domains due to structural disorder, combined with an exciton trapping channel competing with exciton transfer toward the baseplate. An oscillatory transient signal damped in <1 ps has the highest intensity in the case of the most efficient exciton transfer to the baseplate. These results agree well with an earlier computational finding of exciton transfer driven by low-frequency rotational motion of molecules in the chlorosome. Such an exciton transfer process belongs to the quantum coherent regime, for which the Förster theory for intermolecular exciton transfer does not apply. Our work hence strongly indicates that structural flexibility is important for efficient long-range exciton transfer in chlorosomes.

11.
New Phytol ; 239(5): 1869-1886, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37429324

RESUMO

In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild-types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de-epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2-2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS-regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de-epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH-like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de-epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Complexo de Proteínas do Centro de Reação Fotossintética , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Luz , Fotossíntese/fisiologia , Arabidopsis/metabolismo , Clorofila/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Proteínas de Membrana/metabolismo
12.
J Phys Chem B ; 127(5): 1097-1109, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36696537

RESUMO

Chlorosomes are supramolecular aggregates that contain thousands of bacteriochlorophyll molecules. They perform the most efficient ultrafast excitation energy transfer of all natural light-harvesting complexes. Their broad absorption band optimizes light capture. In this study, we identify the microscopic sources of the disorder causing the spectral width and reveal how it affects the excited state properties and the optical response of the system. We combine molecular dynamics, quantum chemical calculations, and response function calculations to achieve this goal. The predicted linear and two-dimensional electronic spectra are found to compare well with experimental data reproducing all key spectral features. Our analysis of the microscopic model reveals the interplay of static and dynamic disorder from the molecular perspective. We find that hydrogen bonding motifs are essential for a correct description of the spectral line shape. Furthermore, we find that exciton delocalization over tens to hundreds of molecules is consistent with the two-dimensional electronic spectra.

13.
Aesthet Surg J ; 41(9): 1029-1037, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33865237

RESUMO

BACKGROUND: Protective funnel devices are commonly used to deliver implants in primary breast augmentation (BA) yet there is a paucity of evidence-based data describing their safety in the literature. OBJECTIVES: The purpose of this study was to assess the safety of protective funnels in primary BA within the first 30 days postoperatively. METHODS: This multicenter, Level 3 study retrospectively reviewed the surgical records of 380 consecutive patients (760 breasts) who underwent primary BA by 9 board-certified plastic surgeons using the iNPLANT Funnel (Proximate Concepts LLC, Allendale, NJ) for implant delivery between November 2019 and December 2020. Data were collected pertaining to demographics, implant information, surgery details, and postoperative complications. RESULTS: The mean patient age was 33 years and 76% of patients had a BMI <25 kg/m2. Of this cohort, 11.4% were smokers, 0.8% had diabetes, and 83% were ASA Class 1. All patients received smooth implants with a median volume of 375 cc. A total of 8 (2.1%) complications were reported, including 3 hematomas (0.79%), 1 seroma (0.26%), and 1 superficial infection (0.26%). No patient required explantation. We identified ASA class, BMI, surgery duration, and implant size as potential risk factors. CONCLUSIONS: The data suggest that the use of protective funnels, such as the iNPLANT Funnel, in primary BA is a safe option when these are utilized according to the manufacturer's Instructions for Use. The use of this device led to a low infection rate (0.26%) and a complication rate of (2.1%) consistent with the average reported in the literature (2%-2.5%).1 Implications for clinical practice are encouraging and future research will include a prospective analysis with a larger case series and potentially a control group.


Assuntos
Implante Mamário , Implantes de Mama , Mamoplastia , Adulto , Implante Mamário/efeitos adversos , Implantes de Mama/efeitos adversos , Estudos de Coortes , Humanos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Estados Unidos/epidemiologia
15.
Ambio ; 50(4): 794-811, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33606247

RESUMO

Like the rest of the world, African countries are reeling from the health, economic and social effects of COVID-19. The continent's governments have responded by imposing rigorous lockdowns to limit the spread of the virus. The various lockdown measures are undermining food security, because stay at home orders have among others, threatened food production for a continent that relies heavily on agriculture as the bedrock of the economy. This article draws on quantitative data collected by the GeoPoll, and, from these data, assesses the effect of concern about the local spread and economic impact of COVID-19 on food worries. Qualitative data comprising 12 countries south of the Sahara reveal that lockdowns have created anxiety over food security as a health, economic and human rights/well-being issue. By applying a probit model, we find that concern about the local spread of COVID-19 and economic impact of the virus increases the probability of food worries. Governments have responded with various efforts to support the neediest. By evaluating the various policies rolled out we advocate for a feminist economics approach that necessitates greater use of data analytics to predict the likely impacts of intended regulatory relief responses during the recovery process and post-COVID-19.


Assuntos
COVID-19 , África , Ansiedade , Controle de Doenças Transmissíveis , Países em Desenvolvimento , Economia , Segurança Alimentar , Abastecimento de Alimentos , Humanos , Políticas , SARS-CoV-2
16.
Ocul Immunol Inflamm ; 29(5): 963-975, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32058829

RESUMO

Purpose: To investigate the effect of NKR-1 antagonists in an established UVR-B-induced cataract mouse model. Furthermore, to examine the expression of pro-inflammatory cytokines/chemokines in mouse eyes following unilateral UVR-B exposure.Methods: Mice received intraperitoneally injections of Fosaprepitant and Spantide I, before and after unilateral exposure to UVR-B. After day 3 and 7 post-exposure, ocular tissues were extracted for the detection of NKR-1 protein level by ELISA.Results: Pretreatment with Fosaprepitant decreases NKR-1 expression in exposed ocular tissues as well as in the unexposed lens epithelium compared to the saline group. Spantide I treatment showed a tendency of NKR-1 overexpression in ocular tissues.Conclusion: The clinically approved NKR-1 receptor antagonist Fosaprepitant decreases NKR-1 protein expression effectively not only in the exposed but also in the unexposed partner eye in a UVR-B irradiation mouse model. No effect was seen on the protein concentration of pro-inflammatory cytokines/chemokines in either eye.


Assuntos
Catarata/metabolismo , Cristalino/efeitos da radiação , Morfolinas/farmacologia , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Lesões Experimentais por Radiação/metabolismo , Receptores da Neurocinina-1/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Humor Aquoso/efeitos dos fármacos , Humor Aquoso/metabolismo , Catarata/etiologia , Corioide/efeitos dos fármacos , Corioide/metabolismo , Corpo Ciliar/efeitos dos fármacos , Corpo Ciliar/metabolismo , Córnea/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Injeções Intraperitoneais , Iris/efeitos dos fármacos , Iris/metabolismo , Cristalino/efeitos dos fármacos , Cristalino/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/etiologia , Retina/efeitos dos fármacos , Retina/metabolismo , Substância P/análogos & derivados , Substância P/farmacologia
17.
Nat Commun ; 11(1): 6388, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319777

RESUMO

Evergreen conifers in boreal forests can survive extremely cold (freezing) temperatures during long dark winter and fully recover during summer. A phenomenon called "sustained quenching" putatively provides photoprotection and enables their survival, but its precise molecular and physiological mechanisms are not understood. To unveil them, here we have analyzed seasonal adjustment of the photosynthetic machinery of Scots pine (Pinus sylvestris) trees by monitoring multi-year changes in weather, chlorophyll fluorescence, chloroplast ultrastructure, and changes in pigment-protein composition. Analysis of Photosystem II and Photosystem I performance parameters indicate that highly dynamic structural and functional seasonal rearrangements of the photosynthetic apparatus occur. Although several mechanisms might contribute to 'sustained quenching' of winter/early spring pine needles, time-resolved fluorescence analysis shows that extreme down-regulation of photosystem II activity along with direct energy transfer from photosystem II to photosystem I play a major role. This mechanism is enabled by extensive thylakoid destacking allowing for the mixing of PSII with PSI complexes. These two linked phenomena play crucial roles in winter acclimation and protection.


Assuntos
Transferência de Energia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Pinus sylvestris/metabolismo , Aclimatação , Clorofila , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Fluorescência , Cinética , Luz , Processos Fotoquímicos , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/química , Estações do Ano , Temperatura , Tilacoides/metabolismo , Fatores de Tempo , Árvores/metabolismo
18.
Open Biol ; 10(9): 200144, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32931722

RESUMO

Non-photochemical quenching (NPQ) is an important photoprotective mechanism in plants and algae. Although the process is extensively studied, little is known about its relationship with ultrastructural changes of the thylakoid membranes. In order to better understand this relationship, we studied the effects of illumination on the organization of thylakoid membranes in Monstera deliciosa leaves. This evergreen species is known to exhibit very large NPQ and to possess giant grana with dozens of stacked thylakoids. It is thus ideally suited for small-angle neutron scattering measurements (SANS)-a non-invasive technique, which is capable of providing spatially and statistically averaged information on the periodicity of the thylakoid membranes and their rapid reorganizations in vivo. We show that NPQ-inducing illumination causes a strong decrease in the periodic order of granum thylakoid membranes. Development of NPQ and light-induced ultrastructural changes, as well as the relaxation processes, follow similar kinetic patterns. Surprisingly, whereas NPQ is suppressed by diuron, it impedes only the relaxation of the structural changes and not its formation, suggesting that structural changes do not cause but enable NPQ. We also demonstrate that the diminishment of SANS peak does not originate from light-induced redistribution and reorientation of chloroplasts inside the cells.


Assuntos
Araceae/química , Membranas Intracelulares/química , Nêutrons , Folhas de Planta/química , Espalhamento a Baixo Ângulo , Tilacoides/genética , Difração de Raios X , Membranas Intracelulares/metabolismo , Luz , Tilacoides/metabolismo
19.
Photosynth Res ; 144(2): 195-208, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32266611

RESUMO

Non-photochemical quenching (NPQ) in photosynthetic organisms provides the necessary photoprotection that allows them to cope with largely and quickly varying light intensities. It involves deactivation of excited states mainly at the level of the antenna complexes of photosystem II using still largely unknown molecular mechanisms. In higher plants the main contribution to NPQ is the so-called qE-quenching, which can be switched on and off in a few seconds. This quenching mechanism is affected by the low pH-induced activation of the small membrane protein PsbS which interacts with the major light-harvesting complex of photosystem II (LHCII). We are reporting here on a mechanistic study of the PsbS-induced LHCII quenching using ultrafast time-resolved chlorophyll (Chl) fluorescence. It is shown that the PsbS/LHCII interaction in reconstituted proteoliposomes induces highly effective and specific quenching of the LHCII excitation by a factor ≥ 20 via Chl-Chl charge-transfer (CT) state intermediates which are weakly fluorescent. Their characteristics are very broad fluorescence bands pronouncedly red-shifted from the typical unquenched LHCII fluorescence maximum. The observation of PsbS-induced Chl-Chl CT-state emission from LHCII in the reconstituted proteoliposomes is highly reminiscent of the in vivo quenching situation and also of LHCII quenching in vitro in aggregated LHCII, indicating a similar quenching mechanism in all those situations. The PsbS mutant lacking the two proton sensing Glu residues induced significant, but much smaller, quenching than wild type. Added zeaxanthin had only minor effects on the yield of quenching in the proteoliposomes. Overall our study shows that PsbS co-reconstituted with LHCII in liposomes represents an excellent in vitro model system with characteristics that are reflecting closely the in vivo qE-quenching situation.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Proteolipídeos/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/química , Clorofila/metabolismo , Fluorescência , Concentração de Íons de Hidrogênio , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Fluorescência , Tilacoides/química , Zeaxantinas/química
20.
Photosynth Res ; 144(2): 171-193, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32307623

RESUMO

Light-harvesting complex II (LHCII) is the major antenna complex in higher plants and green algae. It has been suggested that a major part of the excited state energy dissipation in the so-called "non-photochemical quenching" (NPQ) is located in this antenna complex. We have performed an ultrafast kinetics study of the low-energy fluorescent states related to quenching in LHCII in both aggregated and the crystalline form. In both sample types the chlorophyll (Chl) excited states of LHCII are strongly quenched in a similar fashion. Quenching is accompanied by the appearance of new far-red (FR) fluorescence bands from energetically low-lying Chl excited states. The kinetics of quenching, its temperature dependence down to 4 K, and the properties of the FR-emitting states are very similar both in LHCII aggregates and in the crystal. No such FR-emitting states are found in unquenched trimeric LHCII. We conclude that these states represent weakly emitting Chl-Chl charge-transfer (CT) states, whose formation is part of the quenching process. Quantum chemical calculations of the lowest energy exciton and CT states, explicitly including the coupling to the specific protein environment, provide detailed insight into the chemical nature of the CT states and the mechanism of CT quenching. The experimental data combined with the results of the calculations strongly suggest that the quenching mechanism consists of a sequence of two proton-coupled electron transfer steps involving the three quenching center Chls 610/611/612. The FR-emitting CT states are reaction intermediates in this sequence. The polarity-controlled internal reprotonation of the E175/K179 aa pair is suggested as the switch controlling quenching. A unified model is proposed that is able to explain all known conditions of quenching or non-quenching of LHCII, depending on the environment without invoking any major conformational changes of the protein.


Assuntos
Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Clorofila/metabolismo , Cristalização , Transporte de Elétrons , Fluorescência , Cinética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Químicos , Modelos Moleculares , Teoria Quântica , Razão Sinal-Ruído , Espectrometria de Fluorescência/métodos , Spinacia oleracea/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...