Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(31): 9627-9634, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39072492

RESUMO

We present large-scale atomistic simulations that reveal triple junction (TJ) segregation in Pt-Au nanocrystalline alloys in agreement with experimental observations. While existing studies suggest grain boundary solute segregation as a route to thermally stabilize nanocrystalline materials with respect to grain coarsening, here we quantitatively show that it is specifically the segregation to TJs that dominates the observed stability of these alloys. Our results reveal that doping the TJs renders them immobile, thereby locking the grain boundary network and hindering its evolution. In dilute alloys, it is shown that grain boundary and TJ segregation are not as effective in mitigating grain coarsening, as the solute content is not sufficient to dope and pin all grain boundaries and TJs. Our work highlights the need to account for TJ segregation effects in order to understand and predict the evolution of nanocrystalline alloys under extreme environments.

2.
Sci Rep ; 12(1): 6673, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461319

RESUMO

The interaction of alloying elements with grain boundaries (GBs) influences many phenomena, such as microstructural evolution and transport. While GB solute segregation has been the subject of active research in recent years, most studies focus on ground-state GB structures, i.e., lowest energy GBs. The impact of GB metastability on solute segregation remains poorly understood. Herein, we leverage atomistic simulations to generate metastable structures for a series of [001] and [110] symmetric tilt GBs in a model Al-Mg system and quantify Mg segregation to individual sites within these boundaries. Our results show large variations in the atomic Voronoi volume due to GB metastability, which are found to influence the segregation energy. The atomistic data are then used to train a Gaussian Process machine learning model, which provides a probabilistic description of the GB segregation energy in terms of the local atomic environment. In broad terms, our approach extends existing GB segregation models by accounting for variability due to GB metastability, where the segregation energy is treated as a distribution rather than a single-valued quantity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...