Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 2): 132689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38806084

RESUMO

This work involves preparing zinc manganite nanoparticles (ZnMn2O4 NPs) using the Sol-gel method. Polymer nanocomposites of polyvinyl alcohol (PVA)/Sodium alginate (NaAlg)- ZnMn2O4 NPs were created using the solution casting technique. The polymer nanocomposites films were made with varying weight percentages of ZnMn2O4 nanoparticles. With the addition of nanofiller, the reduced direct and indirect energy band gap values and increased Urbach energy values were discovered in the UV-Vis data. XRD data showed a reduction in crystallinity degree with dopant. ZnMn2O4 NPs had a strong interaction with PVA/NaAlg blend, as confirmed by FTIR. The addition of ZnMn2O4 NPs led to improved thermal stability of the polymer nanocomposites films. Additionally, the nanocomposites films' mechanical characteristics were examined. The loading of ZnMn2O4 nanoparticles has been associated with an increasing trend in the mechanical properties of the nanocomposites, including its toughness, Young's modulus, Tensile strength (Ts), and elongation. The antibacterial activity of the nanocomposites against fungus and bacteria was studied. Additionally, PVA/NaAlg-ZnMn2O4 nanocomposites films had good antibacterial characteristics against environmental microorganisms such as Gram-positive (G+) S. aureus and Gram-negative(G-) E. coli bacteria as well as fungi C. albicans and A. niger. It was observed that the biodegradability of the nanocomposite films was lower compared to the pure PVA/NaAlg film. Compared to pure film, the water solubility was decreased upon the addition of ZnMn2O4 NPs. After ZnMn2O4 was added to the pure blend, the WVTR decreased. The produced polymer nanocomposites films appear to be a promising material for food packing, according to these results.


Assuntos
Alginatos , Antibacterianos , Embalagem de Alimentos , Nanocompostos , Álcool de Polivinil , Álcool de Polivinil/química , Nanocompostos/química , Embalagem de Alimentos/métodos , Alginatos/química , Antibacterianos/farmacologia , Antibacterianos/química , Resistência à Tração , Fenômenos Mecânicos , Fenômenos Ópticos , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Compostos de Zinco/química
2.
ACS Omega ; 9(20): 22112-22122, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38799360

RESUMO

The synthesis of nanoparticles using environmentally friendly methods for applications in fields such as food packaging and biomedicine has been gaining increasing attention. Organic-inorganic nanostructures offer opportunities to create innovative materials suitable for use in optoelectronics and biological applications. In this study, we focused on producing nanocomposite films by blending carboxymethyl cellulose (CMC) and chitosan (CS) polymers in equal proportions (50/50 wt %) and adding silver nanoparticles (Ag NPs) through a solution casting process. Our objective was to examine how the introduction of Ag NPs influenced the structural, optical, mechanical, electrical, and antibacterial properties of the virgin CMC/CS composites. XRD patterns of the prepared samples indicated the presence of crystalline Ag phases within the CMC/CS blend. FT-IR spectroscopy showed the primary vibrational peaks associated with CMC and CS, which exhibited reduced intensity after the addition of Ag NPs. The UV absorption of the nanocomposites exhibited a gradual increase and a shift toward longer wavelengths. The electrical properties are enhanced with higher concentrations of Ag NPs. An increase in the content of Ag NPs resulted in a corresponding enhancement of antibacterial activity against both Staphylococcus aureus and Escherichia coli. The CMC/CS-Ag-doped films demonstrated significant enhancements in Young's modulus (Y), tensile stress (σt), and elongation at break (εB). These findings suggest that these nanocomposite films hold promise for potential applications in optoelectronics and biological fields.

3.
Int J Biol Macromol ; 264(Pt 2): 130668, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453109

RESUMO

In this study, nanocomposite films were produced by blending polyvinyl alcohol (PVA) and chitosan (Cs) polymers with 70 % PVA and 30 % Cs, incorporating silver nanoparticles (Ag NPs) via a solution-casting method. The research aims to investigate the impact of the biosynthesized Ag NPs by Chenopodium murale leaf extract on optical, morphological, mechanical, thermal, electrical, and antibacterial properties. XRD analysis showed a decrease in crystallinity degree with Ag NPs addition. TEM revealed Ag NPs in cubic and spherical shapes with an average size of 23.4 nm. SEM and AFM indicated surface morphology changes. FT-IR spectra showed interaction between Ag ions and the blend. The energy gap decreased with increasing Ag NPs concentration. TGA exhibited enhanced thermal stability. Mechanical properties improved significantly. AC electrical conductivity and dielectric parameters were studied. Antibacterial activity against Gram-positive and Gram-negative bacteria was observed. Overall, PVA/Cs-Ag NPs films show promise for food packaging and optoelectronic applications.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanocompostos , Antibacterianos/farmacologia , Prata , Álcool de Polivinil , Embalagem de Alimentos , Espectroscopia de Infravermelho com Transformada de Fourier , Bactérias Gram-Negativas , Bactérias Gram-Positivas
4.
Front Physiol ; 11: 547577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329016

RESUMO

Marked age- and development- related differences have been observed in morphology and characteristics of action potentials (AP) of neonatal and adult sinoatrial node (SAN) cells. These may be attributable to a different set of ion channel interactions between the different ages. However, the underlying mechanism(s) have yet to be elucidated. The objective of this study was to determine the mechanisms underlying different spontaneous APs and heart rate between neonatal and adult SAN cells of the rabbit heart by biophysical modeling approaches. A mathematical model of neonatal rabbit SAN cells was developed by modifying the current densities and/or kinetics of ion channels and transporters in an adult cell model based on available experimental data obtained from neonatal SAN cells. The single cell models were then incorporated into a multi-cellular, two-dimensional model of the intact SAN-atrium to investigate the functional impact of altered ion channels during maturation on pacemaking electrical activities and their conduction at the tissue level. Effects of the neurotransmitter acetylcholine on the pacemaking activities in neonatal cells were also investigated and compared to those in the adult. Our results showed: (1) the differences in ion channel properties between neonatal and adult SAN cells are able to account for differences in their APs and the heart rate, providing mechanistic insight into understanding the reduced pacemaking rate of the rabbit sinoatrial node during postnatal development; (2) in the 2D model of the intact SAN-atria, it was shown that cellular changes during postnatal development impaired pacemaking activity through increasing the activation time and reducing the conduction velocity across the SAN; (3) the neonatal SAN model, with its faster beating rates, showed a greater sensitivity to parasympathetic modulation in response to acetylcholine than did the adult model. These results provide novel insights into the understanding of the cellular mechanisms underlying the differences in the cardiac pacemaking activities of the neonatal and adult SAN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...