Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37765755

RESUMO

Augmented reality (AR) has been shown to improve productivity in industry, but its adverse effects (e.g., headaches, eye strain, nausea, and mental workload) on users warrant further investigation. The objective of this study is to investigate the effects of different instruction methods (i.e., HoloLens AR-based and paper-based instructions) and task complexity (low and high-demanding tasks) on cognitive workloads and performance. Twenty-eight healthy males with a mean age of 32.12 (SD 2.45) years were recruited in this study and were randomly divided into two groups. The first group performed the experiment using AR-based instruction, and the second group used paper-based instruction. Performance was measured using total task time (TTT). The cognitive workload was measured using the power of electroencephalograph (EEG) features and the NASA task load index (NASA TLX). The results showed that using AR instructions resulted in a reduction in maintenance times and an increase in mental workload compared to paper instructions, particularly for the more demanding tasks. With AR instruction, 0.45% and 14.94% less time was spent on low- and high-demand tasks, respectively, as compared to paper instructions. According to the EEG features, employing AR to guide employees during highly demanding maintenance tasks increased information processing, which could be linked with an increased germane cognitive load. Increased germane cognitive load means participants can better facilitate long-term knowledge and skill acquisition. These results suggested that AR is superior and recommended for highly demanding maintenance tasks since it speeds up maintenance times and increases the possibility that information is stored in long-term memory and encrypted for recalls.


Assuntos
Astenopia , Realidade Aumentada , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Masculino , Humanos , Adulto , Cognição , Nível de Saúde
2.
Micromachines (Basel) ; 14(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37420983

RESUMO

Studies on using multifunctional graphene nanostructures to enhance the microfabrication processing of monolithic alumina are still rare and too limited to meet the requirements of green manufacturing criteria. Therefore, this study aims to increase the ablation depth and material removal rate and minimize the roughness of the fabricated microchannel of alumina-based nanocomposites. To achieve this, high-density alumina nanocomposites with different graphene nanoplatelet (GnP) contents (0.5 wt.%, 1 wt.%, 1.5 wt.%, and 2.5 wt.%) were fabricated. Afterward, statistical analysis based on the full factorial design was performed to study the influence of the graphene reinforcement ratio, scanning speed, and frequency on material removal rate (MRR), surface roughness, and ablation depth during low-power laser micromachining. After that, an integrated intelligent multi-objective optimization approach based on the adaptive neuro-fuzzy inference system (ANIFS) and multi-objective particle swarm optimization approach was developed to monitor and find the optimal GnP ratio and microlaser parameters. The results reveal that the GnP reinforcement ratio significantly affects the laser micromachining performance of Al2O3 nanocomposites. This study also revealed that the developed ANFIS models could obtain an accurate estimation model for monitoring the surface roughness, MRR, and ablation depth with fewer errors than 52.07%, 100.15%, and 76% for surface roughness, MRR, and ablation depth, respectively, in comparison with the mathematical models. The integrated intelligent optimization approach indicated that a GnP reinforcement ratio of 2.16, scanning speed of 342 mm/s, and frequency of 20 kHz led to the fabrication of microchannels with high quality and accuracy of Al2O3 nanocomposites. In contrast, the unreinforced alumina could not be machined using the same optimized parameters with low-power laser technology. Henceforth, an integrated intelligence method is a powerful tool for monitoring and optimizing the micromachining processes of ceramic nanocomposites, as demonstrated by the obtained results.

3.
Nanomaterials (Basel) ; 13(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985930

RESUMO

Studies about adding graphene reinforcement to improve the microfabrication performance of alumina (Al2O3) ceramic materials are still too rare and incomplete to satisfy sustainable manufacturing requirements. Therefore, this study aims to develop a detailed understanding of the effect of graphene reinforcement to enhance the laser micromachining performance of Al2O3-based nanocomposites. To achieve this, high-density Al2O3 nanocomposite specimens were fabricated with 0 wt.%, 0.5 wt.%, 1 wt.%, 1.5 wt.%, and 2.5 wt.% graphene nanoplatelets (GNPs) using a high-frequency induction heating process. The specimens were subjected to laser micromachining. Afterward, the effects of the GNP contents on the ablation depth/width, surface morphology, surface roughness, and material removal rate were studied. The results indicate that the micro-fabrication performance of the nanocomposites was significantly affected by the GNP content. All nanocomposites exhibited improvement in the ablation depth and material removal rate compared to the base Al2O3 (0 wt.% GNP). For instance, at a higher scanning speed, the ablation depth was increased by a factor of 10 times for the GNP-reinforced specimens compared to the base Al2O3 nanocomposites. In addition, the MRRs were increased by 2134%, 2391%, 2915%, and 2427% for the 0.5 wt.%, 1 wt.%, 1.5 wt.%, and 2.5 wt.% GNP/Al2O3 nanocomposites, respectively, compared to the base Al2O3 specimens. Likewise, the surface roughness and surface morphology were considerably improved for all GNP/Al2O3 nanocomposite specimens compared to the base Al2O3. This is because the GNP reinforcement reduced the ablation threshold and increased the material removal efficiency by increasing the optical absorbance and thermal conductivity and reducing the grain size of the Al2O3 nanocomposites. Among the GNP/Al2O3 nanocomposites, the 0.5 wt.% and 1 wt.% GNP specimens showed superior performance with minimum defects in most laser micromachining conditions. Overall, the results show that the GNP-reinforced Al2O3 nanocomposites can be machined with high quality and a high production rate using a basic fiber laser system (20 Watts) with very low power consumption. This study shows huge potential for adding graphene to alumina ceramic-based materials to improve their machinability.

4.
Work ; 72(2): 539-552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527589

RESUMO

BACKGROUND: Unsuitable schoolbags may stress the spine and promote poor body posture, particularly for school students. Global recommendations have suggested that schoolbag weight must not exceed 10% of a healthy student's body mass, which would need continuous monitoring and enforcement. OBJECTIVES: The present study presents a comparison between an ergonomically designed schoolbag, which helps reduce the potential effects of carrying a load, and a commercial one. METHODS: A total of 30 healthy male students were recruited for this experiment. Independent variables determined were schoolbag type (ergonomically designed and commercial schoolbags) and three load levels based on body mass percentage (i.e., 10%, 15%, and 20% of body mass). Heart rate variability (HRV) and body discomfort rating were then measured. RESULTS: Our results showed that the developed schoolbag promoted enhanced subjective measures and HRV response at 15% and 20% of body mass. Participants who wore the developed schoolbags experienced significantly lesser neck, shoulder, upper and lower trunk discomfort than those who wore the traditional ones. Changing the load percentage from 10% to 15% caused an increase in heart rate among participants carrying a commercial schoolbag but a decrease in heart rate among those carrying the developed schoolbag. CONCLUSIONS: The findings presented herein suggest introducing strategies for reducing the potential impact of load carrying through the combined effect of new educational inventions and policy changes.


Assuntos
Remoção , Instituições Acadêmicas , Peso Corporal , Frequência Cardíaca , Humanos , Remoção/efeitos adversos , Masculino , Suporte de Carga/fisiologia
5.
Healthcare (Basel) ; 9(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34946369

RESUMO

Physical inactivity has increased in prevalence among adults in industrialized and developing countries owing to the fact that the majority of job situations require individuals to remain seated for extended periods of time. This research aims to evaluate the influence of cycling on a stationary bike while executing a keyboard assembly task on the task completion time, error percentage, and physiological and subjective measurements. The physiological measures were electroencephalography (EEG) and electrocardiographic (ECG) signal responses, whereas the subjective measures were subjective workload ratings and subjective body discomforts. Two variables were evaluated, namely assembly methods (with versus without pedal exercises at a moderate intensity) and session testing (pre- versus post-test). Thus, the repeated measures design (i.e., assembly method by session testing of participants) was used. According to the completion time, error %, participant self-reports, and ECG and EEG statistical analysis data, the participants' performances in the keyboard assembly task did not decrease while they performed pedaling exercises (p > 0.05). Additionally, when participants completed the assembly task while executing the pedaling exercises, the mean inter-beat (RR) intervals significantly reduced (p < 0.05) while the mean heart rate increased (p < 0.05), which mean that pedaling exercises caused physical workloads on the participants. Participant performance was unaffected by performing a workout while performing the assembly activity. Thus, administrations should encourage their employees to engage in short sessions of moderate-intensity exercise similar to the suggested exercise in the study to improve a person's physical health during work without interfering with the effectiveness of work.

6.
PLoS One ; 16(2): e0247442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33635903

RESUMO

BACKGROUND: The handling of unknown weights, which is common in daily routines either at work or during leisure time, is suspected to be highly associated with the incidence of low back pain (LBP). OBJECTIVES: To investigate the effects of knowledge and magnitude of a load (to be lifted) on brain responses, autonomic nervous activity, and trapezius and erector spinae muscle activity. METHODS: A randomized, within-subjects experiment involving manual lifting was conducted, wherein 10 participants lifted three different weights (1.1, 5, and 15 kg) under two conditions: either having or not having prior knowledge of the weight to be lifted. RESULTS: The results revealed that the lifting of unknown weights caused increased average heart rate and percentage of maximum voluntary contraction (%MVC) but decreased average inter-beat interval, very-low-frequency power, low-frequency power, and low-frequency/high-frequency ratio. Regardless of the weight magnitude, lifting of unknown weights was associated with smaller theta activities in the power spectrum density (PSD) of the central region, smaller alpha activities in the PSD of the frontal region, and smaller beta activities in the PSDs of both the frontal and central regions. Moreover, smaller alpha and beta activities in the PSD of the parietal region were associated only with lifting of unknown lightweights. CONCLUSIONS: Uncertainty regarding the weight to be lifted could be considered as a stress-adding variable that may increase the required physical demand to be sustained during manual lifting tasks. The findings of this study stress the importance of eliminating uncertainty associated with handling unknown weights, such as in the cases of handling patients and dispatching luggage. This can be achieved through preliminary self-sensing of the load to be lifted, or the cautious disclosure of the actual weight of manually lifted objects, for example, through clear labeling and/or a coding system.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Encéfalo/fisiologia , Remoção/efeitos adversos , Músculos Superficiais do Dorso/fisiologia , Incerteza , Adulto , Eletrocardiografia , Eletroencefalografia , Eletromiografia , Voluntários Saudáveis , Frequência Cardíaca , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...