Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 3241216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059391

RESUMO

The World Wide Web services are essential in our daily lives and are available to communities through Uniform Resource Locator (URL). Attackers utilize such means of communication and create malicious URLs to conduct fraudulent activities and deceive others by creating deceptive and misleading websites and domains. Such threats open the doors for many critical attacks such as spams, spyware, phishing, and malware. Therefore, detecting malicious URL is crucially important to prevent the occurrence of many cybercriminal activities. In this study, we examined a set of machine learning (ML) and deep learning (DL) models to detect malicious websites using a dataset comprising 66,506 records of URLs. We engineered three different types of features including lexical-based, network-based and content-based features. To extract the most discriminative features in the dataset, we applied several features selection algorithms, namely, correlation analysis, Analysis of Variance (ANOVA), and chi-square. Finally, we conducted a comparative performance evaluation for several ML and DL models considering set of criteria commonly used to evaluate such models. Results depicted that Naïve Bayes (NB) was the best model for detecting malicious URLs using the applied data with an accuracy of 96%. This research has made contribution to the field by conducting significant features engineering and analysis to identify the best features for malicious URLs predictions, compare different models and achieve a high accuracy using a large new URL dataset.


Assuntos
Aprendizado Profundo , Algoritmos , Teorema de Bayes , Aprendizado de Máquina
2.
Comput Intell Neurosci ; 2022: 1615528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586085

RESUMO

For the enormous growth and the hysterical impact of undocumented malicious software, otherwise known as Zero-Day malware, specialized practices were joined to implement systems capable of detecting these kinds of software to avert possible disastrous consequences. Owing to the nature of developed Zero-Day malware, distinct evasion tactics are used to remain stealth. Hence, there is a need for advance investigations of the methods that can identify such kind of malware. Machine learning (ML) is among the promising techniques for such type of predictions, while the sandbox provides a safe environment for such experiments. After thorough literature review, carefully chosen ML techniques are proposed for the malware detection, under Cuckoo sandboxing (CS) environment. The proposed system is coined as Zero-Day Vigilante (ZeVigilante) to detect the malware considering both static and dynamic analyses. We used adequate datasets for both analyses incorporating sufficient samples in contrast to other studies. Consequently, the processed datasets are used to train and test several ML classifiers including Random Forest (RF), Neural Networks (NN), Decision Tree (DT), k-Nearest Neighbor (kNN), Naïve Bayes (NB), and Support Vector Machine (SVM). It is observed that RF achieved the best accuracy for both static and dynamic analyses, 98.21% and 98.92%, respectively.


Assuntos
Algoritmos , Aprendizado de Máquina , Teorema de Bayes , Redes Neurais de Computação , Software , Máquina de Vetores de Suporte
3.
IEEE Access ; 9: 102327-102344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786317

RESUMO

Coughing is a common symptom of several respiratory diseases. The sound and type of cough are useful features to consider when diagnosing a disease. Respiratory infections pose a significant risk to human lives worldwide as well as a significant economic downturn, particularly in countries with limited therapeutic resources. In this study we reviewed the latest proposed technologies that were used to control the impact of respiratory diseases. Artificial Intelligence (AI) is a promising technology that aids in data analysis and prediction of results, thereby ensuring people's well-being. We conveyed that the cough symptom can be reliably used by AI algorithms to detect and diagnose different types of known diseases including pneumonia, pulmonary edema, asthma, tuberculosis (TB), COVID19, pertussis, and other respiratory diseases. We also identified different techniques that produced the best results for diagnosing respiratory disease using cough samples. This study presents the most recent challenges, solutions, and opportunities in respiratory disease detection and diagnosis, allowing practitioners and researchers to develop better techniques.

4.
Sensors (Basel) ; 21(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805218

RESUMO

The COVID-19 epidemic has caused a large number of human losses and havoc in the economic, social, societal, and health systems around the world. Controlling such epidemic requires understanding its characteristics and behavior, which can be identified by collecting and analyzing the related big data. Big data analytics tools play a vital role in building knowledge required in making decisions and precautionary measures. However, due to the vast amount of data available on COVID-19 from various sources, there is a need to review the roles of big data analysis in controlling the spread of COVID-19, presenting the main challenges and directions of COVID-19 data analysis, as well as providing a framework on the related existing applications and studies to facilitate future research on COVID-19 analysis. Therefore, in this paper, we conduct a literature review to highlight the contributions of several studies in the domain of COVID-19-based big data analysis. The study presents as a taxonomy several applications used to manage and control the pandemic. Moreover, this study discusses several challenges encountered when analyzing COVID-19 data. The findings of this paper suggest valuable future directions to be considered for further research and applications.


Assuntos
Big Data , COVID-19 , Ciência de Dados , Pandemias , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle
5.
Sensors (Basel) ; 21(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920744

RESUMO

With population growth and aging, the emergence of new diseases and immunodeficiency, the demand for emergency departments (EDs) increases, making overcrowding in these departments a global problem. Due to the disease severity and transmission rate of COVID-19, it is necessary to provide an accurate and automated triage system to classify and isolate the suspected cases. Different triage methods for COVID-19 patients have been proposed as disease symptoms vary by country. Still, several problems with triage systems remain unresolved, most notably overcrowding in EDs, lengthy waiting times and difficulty adjusting static triage systems when the nature and symptoms of a disease changes. In this paper, we conduct a comprehensive review of general ED triage systems as well as COVID-19 triage systems. We identified important parameters that we recommend considering when designing an e-Triage (electronic triage) system for EDs, namely waiting time, simplicity, reliability, validity, scalability, and adaptability. Moreover, the study proposes a scoring-based e-Triage system for COVID-19 along with several recommended solutions to enhance the overall outcome of e-Triage systems during the outbreak. The recommended solutions aim to reduce overcrowding and overheads in EDs by remotely assessing patients' conditions and identifying their severity levels.


Assuntos
COVID-19 , Triagem , Surtos de Doenças , Serviço Hospitalar de Emergência , Humanos , Reprodutibilidade dos Testes , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...