Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 137: 106638, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37257374

RESUMO

New benzothienopyran and benzothienopyranopyrimidine derivatives were synthesized based on the structural requirements of topoisomerase I inhibitors. All target compounds exhibited strong cytotoxic activity with GI50 range of 70.62 %-87.29 % in one dose NCI (USA) screening against 60 human tumor cell lines. Among the tested derivatives, eight compounds namely 4d, 4e, 4f, 5b, 5e, 6b, 6d, and 6f demonstrated broad spectrum and potent anticancer efficacy in five dose screening against all tested panels. DNA relaxation assay for the latter compounds showed that 4d, 5b, and 6f exhibited excellent inhibitory activity with IC50 range of 2.553-4.495 µM as compared to indenoisoquinoline reference drug (IC50 = 3.911 ± 0.21 µM). Moreover, the most active compounds were investigated for being topoisomerase poisons or catalytic inhibitors using DNA nicking assay. Compounds 4d and 6f were found to be potential Topo I poisons, whereas compound 5b has acted as Topo I suppressor. Analyzing cell cycle and induction of apoptosis for the most active compound 4d, revealed growth arrest at the S phase in MDA-MB-435 cells similarly to indenoisoquinoline reference drug. Additionally, in silico molecular modeling study for eight most active cytotoxic compounds in five dose screening demonstrated interaction with DNA as well as distinctive binding pattern similar to the reference indenoisoquinoline, indicating that the newly discovered targets are supposed to be promising candidates as Topo I inhibitors.


Assuntos
Antineoplásicos , Venenos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/farmacologia , Proliferação de Células , Antineoplásicos/química , Linhagem Celular Tumoral , Apoptose , DNA , Venenos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular
2.
Bioorg Chem ; 112: 104915, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33905973

RESUMO

A series of new benzo[b]thiophenes 2a-f and benzo[4,5]thieno[3,2-b]pyran derivatives 3a-f and 4a-f were synthesized and their structures were confirmed by elemental analyses and spectral data. All synthesized compounds were evaluated by the National Cancer Institute (NCI, USA) against 60 human tumor cell lines. Compounds 3a-f and 4a-f showed potent cytotoxic effects in one dose assay with mean growth inhibition ranging from 62% to 80%. Six compounds 3a, 3d, 3e, 3f, 4d and 4e were selected by NCI, USA for five dose evaluation against 60 human tumor cell lines. Compounds 3a, 3d, 3e and 3f exhibited very potent and broad spectrum cytotoxicity against almost all cancer cell lines with mean concentration that yield 50% growth inhibition (MG-MID GI50) of 0.1-0.58 µM and mean concentration that produce 100% growth inhibition (MG-MID TGI) of 6.03-10.00 µM. Compounds 4d and 4e exhibited very potent and selective cytotoxic activity against MDA-MB-435 subpanel (melanoma cancer) with GI50 of 0.45 µM and 0.59 µM, respectively. The mechanism of antiproliferative activity was determined for the most active compounds 3a, 3d, 3e, 3f, 4d, and 4evia measuring their half maximal inhibitory concentration (IC50) against topoisomerase I enzyme at different concentrations. Compounds 3a and 3e exhibited excellent activity compared with reference drugs with IC50 of 0.295 µM and 0.219 µM, respectively. Plasmid DNA nicking assay verified that these compounds are topoisomerase I poisons not suppressors. The active compound 3e induced a significant disruption in the cell cycle profile parallel to its effect on apoptosis induction.


Assuntos
Antineoplásicos/farmacologia , DNA Topoisomerases Tipo I/metabolismo , Piranos/farmacologia , Inibidores da Topoisomerase I/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Piranos/síntese química , Piranos/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química
3.
Bioorg Chem ; 83: 47-54, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30342385

RESUMO

New pyrazoles and pyrazolo[3,4-b] pyridines were synthesized and their structure was confirmed by elemental analyses as well as IR, 1H NMR, 13C NMR, and mass spectral data. All the newly synthesized derivatives were evaluated in vitro for inhibitory activity against COX-1 and COX-2 enzymes and their IC50 values were calculated, most of the derivatives showed good inhibitory activity with derivatives IVb, IVh and IVJ showing inhibitory activity better than celecoxib. Moreover, the eight most potent derivatives IVa, IVb, IVc, IVd, IVe, IVh, IVJ, and IVL were selected for in vivo assay to measure their effect on paw edema in rates and their ulcerogenic effect. Compounds IVa, IVb and IVc were found to be the most active and selective as COX-2 inhibitors and most effective in protection from edema, they were also found to have lowest ulcerogenic effect among all derivatives.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Edema/tratamento farmacológico , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Carragenina , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/metabolismo , Masculino , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Ratos , Relação Estrutura-Atividade , Úlcera/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...