Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1348365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544976

RESUMO

Biosurfactants are surface-active molecules with unique qualities and various uses. Many microorganisms produce secondary metabolites with surface-active characteristics that serve various antiviral functions. The HIV and Zika viruses were chosen for this study because they can spread from mother to child and result in potentially fatal infections in infants. Halophilic bacteria from the Red Sea solar saltern in Egypt were screened using drop collapse, emulsification activity, and oil displacement assays to produce biosurfactants and emulsifiers. Halobacterium jilantaiense strain JBS1 was the most effective strain of the Halobacteriaceae family. It had the best oil displacement test and emulsification activity against kerosene and crude oil, respectively. Among the ten isolates, it produced the most promising biosurfactant, also recognized by the GC-MASS library. This study evaluated biosurfactants from halophilic bacteria as potential antiviral drugs. Some of the computer methods we use are molecular docking, ADMET, and molecular dynamics. We use model organisms like the HIV reverse transcriptase (PDB: 5VZ6) and the Zika virus RNA-dependent RNA polymerase (ZV-RdRP). Molecular docking and molecular dynamics make the best complexes with 5VZ6 HIV-RT and flavone (C25) and 5wz3 ZV-RdRP and ethyl cholate (C8). Testing for ADMET toxicity on the complex revealed that it is the safest medicine conceivable. The 5VZ6-C25 and 5wz3-C8 complexes also followed the Lipinski rule. They made five hydrogen bond donors and ten hydrogen bond acceptors with 500 Da MW and a 5:1 octanol/water partition coefficient. Finally, extreme settings require particular adaptations for stability, and extremophile biosurfactants may be more stable.

2.
Front Bioeng Biotechnol ; 12: 1348344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544980

RESUMO

Active components in medicinal plants provide unlimited useful and traditional medicines. Antimicrobial activities are found in secondary metabolites in plant extracts such as argan oil. This experimental investigation aims to determine argan oil's volatile compounds and examine their in vitro antimicrobial properties. In silico simulations, molecular docking, pharmacokinetics, and drug-likeness prediction revealed the processes underlying the in vitro biological possessions. Gas chromatography-mass spectrometry (GC/MS) was used to screen argan oil's primary components. In silico molecular docking studies were used to investigate the ability of the selected bioactive constituents of argan oil to act effectively against Pseudomonas aeruginosa and Staphylococcus aureus (S. aureus) isolated from infections. The goal was to study their ability to interact with both bacteria's essential therapeutic target protein. The 21 chemicals in argan oil were identified by GC/MS. Docking results for all compounds with S. aureus and P. aeruginosa protease proteins ranged from -5 to -9.4 kcal/mol and -5.7 to -9.7 kcal/mol, respectively, compared to reference ligands. Our docking result indicates that the 10-octadecenoic acid, methyl ester was the most significant compound with affinity scores of -9.4 and -9.7 kcal/mol for S. aureus and P. aeruginosa proteins, respectively. The minimal bactericidal concentration (MBC) and minimal inhibitory concentration (MIC) of argan oil were 0.7 ± 0.03 and 0.5 ± 0.01 for S. aureus and 0.4 ± 0.01 and 0.3 ± 0.02 for P. aeruginosa, respectively. We confirmed the antimicrobial properties of argan oil that showed significant growth inhibition for S. aureus and P. aeruginosa.

3.
Poult Sci ; 102(11): 103054, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37729677

RESUMO

The present study aims to evaluate the antimicrobial activity (in vitro study) of olive leaves powder (OLP) and its role in improving the broiler productivity, carcass criteria, blood indices, and antioxidant activity. A total of 270 one-day-old broiler chickens were distributed into 6 treatment groups as follows: the first group: basal diet without any supplementation, while the second, third, fourth, fifth, and sixth groups: basal diet supplemented with 50, 75, 100, 125, and 150 (µg/g), respectively. The in vitro study showed that the OLP has good antibacterial activity in the concentration-dependent matter; OLP 175 µg/mL inhibited the tested bacteria in the zones range of (0.8-4 cm), Klebsiella Pneumonaie (KP) was the most resistant bacteria to OLP concentration. The antioxidant activity of OLP increased with increasing the concentration of OLP compared to ascorbic acid, where OLP 175 µg/mL scavenged 91% of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radicals compared to 93% scavenging activity of ascorbic acid. Broiler chickens fed diets with OLP had significantly (P < 0.05) higher body weight (BW) and body weight growth (BWG) than the control birds. The treatment with OLP significantly reduced the feed intake (FI) and feed conversion rate (FCR) when compared to control. Groups supplemented with OLP showed decreased abdominal fat deposition and a significant increase in the net carcass and breast muscle weight. OLP improved birds' blood parameters in comparison with control birds. All pathogenic bacterial numbers in caecal samples were decreased with elevating OLP levels, but the cecal Lactobacillus bacterial count was increased. In conclusion, OLP supplementation improved broiler chickens' performance, carcass traits, and blood parameters. Moreover, OLP improved birds' liver functions (reduced Alanine transaminase [ALT] and aspartate aminotransferase [AST] levels) in comparison with control. In addition, OLP promoted the antioxidant status, minimized the harmful microbial load, and increased beneficial bacterial count in the cecal contents of broilers.

4.
Infect Drug Resist ; 16: 5335-5346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37605760

RESUMO

Background: Wound infection is a prevalent concern in the medical field, being is a multi-step process involving several biological processes. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) infections often occur in areas of damaged skin, such as abrasions and open wounds. Methods: This research aims to light the incidence of MRSA and VRSA in wound swabs, the antimicrobial susceptibility configuration of isolated S. aureus patterns in pus/wound samples collected from Saudi Arabian tertiary hospital. The cross section study, ß- lactamase detection, VRSA genotyping, MAR index, D-test and VRSA genotyping are methods, which used for completed this research. Results: Patients of several ages and genders delivered specimens from two hospitals in the Al jouf area, in the northern province of Saudi Arabia. S. aureus was found in 188 (34.7%) of the 542 wounds. The traumatized wounds provided 71 isolates (38.8%), surgical wound provided 49 isolates (26.8%) and abscess were represented 16 by isolates (8.7%). In the study, 123 (65.4%) out of 188 were MRSA, 60 (31.9%) were MSSA, and five (2.7%) were VRSA. Linezolid and rifampin were found to be the most effective antimicrobials with 100% in vitro antibacterial activity against S. aureus isolates. The Multiple antimicrobials resistance (MAR) index revealed 73 isolates (38.9%) with a MAR index greater than 0.2, and 115 (61.1%) less than 0.2. The D-test showed that of MLSb phenotypes among S. aureus, 22 (11.7%) strains were D-test positive (MLSbi phenotype), 53 (28.2%) strains were constitutive MLSc phenotypes, and 17 (9%) strains were shown to have MSb phenotypes. All VRSA isolates (n=5) were found to be positive for vanA, and no vanB positive isolates were detected in the study. Conclusion: Regular monitoring and an antimicrobials stewardship program should be in place to provide critical information that can be utilized for empirical therapy and future prevention strategies.

5.
Infect Drug Resist ; 16: 4397-4408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37431447

RESUMO

Background: Otitis externa and otitis media are two types of ear infections that affect people of all ages, although they are more common in newborns and young children. Antibiotic usage, healthcare, and advanced age all play a role in the development of this illness. Methods: Fifty-eight patients with various kinds of infections of the ears were voluntary patients attending the outpatient clinics of the Prince Mutaib Bin Abdulaziz Hospital in Sakaka, Al Jouf, Saudi Arabia, examined to evaluate the role of bacteria and the likely significance of plasmids in their antibiotic resistance as ear infectious agents. Results: Staphylococcus aureus and Pseudomonas aeruginosa are the most prevalent bacteria found in ear infections. The greatest number of major bacterial isolates were S. aureus (54%), followed by P. aeruginosa (13%), whereas a smaller number of isolates (3%) were from Streptococcus pyogenes, Bacillus subtilis, and Proteus vulgaris, respectively. Mixed growth was noted in 3.4% of instances. The isolation rate for Gram-positive organisms was 72%, while the rate for Gram-negative species was 28%. All the isolates had DNA greater than 14 kilobases. Hind III analysis of the plasmid DNA extracted from the resistant strains of ear infection demonstrated that antibiotic-resistance plasmids were extensively dispersed. Exotoxin A PCR amplification indicated 396 pb PCR-positive DNA for all identified samples, with the exception of three strains for which no band was observed. Patients in the epidemiological study ranged in number, but all were linked together for the purposes of the study because of their shared epidemiological characteristics. Conclusion: Vancomycin, linezolid, tigecycline, rifampin, and daptomycin are all antibiotics that have been shown to be effective against S. aureus and P. aeruginosa. Microbiological pattern evaluation and antibiotic sensitivity patterns of the microorganisms providing empirical antibiotics are becoming increasingly crucial to minimize issues and the development of antibiotic-resistant strains.

6.
Poult Sci ; 102(7): 102685, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267711

RESUMO

Late in 2016, multiple reassortant highly pathogenic (HP) avian influenza virus (AIVs) H5N8 was detected. AIVs infect different isolated hosts with a specific viral tropism. In the current study, the whole genome of the Egyptian A/chicken/NZ/2022 was genetically characterized. The H5N8-A/Common-coot/Egypt/CA285/2016, A/duck/Egypt/SS19/2017 previously isolated in Egypt, and the recently circulating A/chicken/Egypt/NZ/2022 reassortant viruses' replication, pathogenicity, and viral load in comparison to the H5N1-Clade 2.2.1.2 were investigated on Madin-Darby canine kidney cell (MDCK), by using the cytopathic effect (CPE) percent and matrix-gene reverse transcription quantitative real-time polymerase chain reaction to compute the virus titer at various points in time. The A/chicken/Egypt/NZ/2022 virus was similar to the reassortant strain clade 2.3.4.4b discovered in farms in 2016. The 2 sub-groupings of hemagglutinin (HA) and neuraminidase (NA) genes were identified (I and II); the A/chicken/Egypt/NZ/2022 HA and NA genes were associated with subgroup II. The subgroup II of the HA gene was further divided into A and B owing to acquired specific mutations. The A/chicken/Egypt/NZ/2022 in our study was associated with subgroup B. The M, NS, PB1, and PB2 genes were shown to be clustered into clade 2.3.4.4b by full genome sequence analysis; however, the PA and NP genes were found to be associated with H6N2 viruses, which had particular mutations that improved viral virulence and mammalian transmission. The current results showed that the circulating H5N8 viruses were more variable than previous viruses analyzed in 2016 and 2017. Compared to other reassortant HPAI H5N8, and HPAI H5N1, the growth kinetics of A/chicken/Egypt/NZ/2022 had a high CPE without the addition of trypsin and the most viral copies with a significant difference (P < 0.01) in comparison to HPAI H5N8 and HPAI H5N1 reassortant viruses. Accordingly, the effective viral replication of A/chicken/Egypt/NZ/2022 in the MDCK than other viruses may play a factor in the spread and maintenance of specific reassortant H5N8 influenza virus in the field.


Assuntos
Doenças do Cão , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Influenza Aviária , Animais , Cães , Vírus da Influenza A Subtipo H5N8/genética , Galinhas , Virus da Influenza A Subtipo H5N1/genética , Rim/patologia , Filogenia , Mamíferos
7.
Front Plant Sci ; 14: 1136961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152127

RESUMO

Introduction: Medicinal plants have been considered as potential source of therapeutics or as starting materials in drugs formulation. Methods: The current study aims to shed light on the therapeutic potential of the Amomum subulatom and Amomum xanthioides Fruits by analyzing the phytochemical composition of their seeds and fruits using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) techniques to determine the presence of bioactive components such as flavonoids, phenols, vitamins, steroids, and essential oils. Results and Discussion: The protein content is usually higher than the total lipids in both species except the fruit of A. subulatum which contain more lipids than proteins. The total protein contents for A. subulatum were 235.03 ± 21.49 and 227.49 ± 25.82 mg/g dry weight while for A. xanthioides were 201.9 ± 37.79 and 294.99 ± 37.93 mg/g dry weight for seeds and fruit, respectively. The Carvacrol levels in A. subulatum is 20 times higher than that in A. xanthioides. Lower levels of α-Thujene, Phyllanderenes, Ascaridole, and Pinocarvone were also observed in both species. According to DPPH (2,2-diphenylpicrylhydrazyl) assay, seed the extract of A. subulatum exhibited the highest antioxidant activity (78.26±9.27 %) followed by the seed extract of A. xanthioides (68.21±2.56 %). Similarly, FRAP (Ferric Reducing Antioxidant Power) assay showed that the highest antioxidant activity was exhibited by the seed extract of the two species; 20.14±1.11 and 21.18±1.04 µmol trolox g-1 DW for A. subulatum and A. xanthioides, respectively. In terms of anti-lipid peroxidation, relatively higher values were obtained for the fruit extract of A. subulatum (6.08±0.35) and the seed extract of A. xanthioides (6.11±0.55). Ethanolic seed extracts of A. subulatum had the highest efficiency against four Gram-negative bacterial species which causes serious human diseases, namely Pseudomonas aeruginosa, Proteus vulgaris, Enterobacter aerogenes, and Salmonella typhimurium. In addition, P. aeruginosa was also inhibited by the fruit extract of both A. subulatum and A. xanthioides. For the seed extract of A. xanthioides, large inhibition zones were formed against P. vulgaris and the fungus Candida albicans. Finally, we have in silico explored the mode of action of these plants by performing detailed molecular modeling studies and showed that the antimicrobial activities of these plants could be attributed to the high binding affinity of their bioactive compounds to bind to the active sites of the sterol 14-alpha demethylase and the transcriptional regulator MvfR. Conclusion: These findings demonstrate the two species extracts possess high biological activities and therapeutical values, which increases their potential value in a number of therapeutic applications.

8.
Molecules ; 28(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37050006

RESUMO

In the present study, an attempt was made to investigate the in vitro antioxidant, anticancer, and antibacterial activities of Delonix regia, then in vivo evaluate its safety as a natural colorant and sweetener in beverages compared to synthetic colorant and sweetener in rats, then serve the beverages for sensory evaluation. Delonix regia flowers had high protein, polysaccharide, Ca, Na, Mg, K, and Fe contents. The Delonix regia pigment extract (DRPE) polysaccharides were separated and purified by gel permeation chromatography on Sephacryl S-200, characterized by rich polysaccharides (13.6 g/L). The HPLC sugar profile detected the monosaccharides in the extracted polysaccharides, composed of mannose, galactose, glucose, arabinose, and gluconic acid, and the structure of saccharides was confirmed by FTIR, which showed three active groups: carbonyl, hydrocarbon, and hydroxyl. On the other hand, the red pigment constituents of DRPE were detected by HPLC; the main compounds were delphinidin and cyanidin at 15 µg/mL. The DRPE contained a considerable amount (26.33 mg/g) of anthocyanins, phenolic compounds (64.7 mg/g), and flavonoids (10.30 mg/g), thus influencing the antioxidant activity of the DRPE, which scavenged 92% of DPPH free radicals. Additionally, it inhibited the population of pathogenic bacteria, including Staphylococcus aureus, Listeria monocyogenes, Salmonella typhimurum, and Pseudomonas aeruginosa, in the range of 30-90 µg/mL, in addition to inhibiting 85% of pancreatic cancer cell lines. On the in vivo level, the rats that were delivered a diet containing DRPE showed regular liver markers (AST, ALP, and ALT); kidney markers (urea and creatinine); high TP, TA, and GSH; and low MDA, while rats treated with synthetic dye and aspartame showed higher liver and kidney markers; lowered TP, TA, and GSH; and high MDA. After proving the safety of DRPE, it can be safely added to strawberry beverages. Significant sensorial traits, enhanced red color, and taste characterize the strawberry beverages supplemented with DRPE. The lightness and redness of strawberries were enhanced, and the color change ΔE values in DRPE-supplemented beverages ranged from 1.1 to 1.35 compared to 1.69 in controls, indicating the preservative role of DRPE on color. So, including DRPE in food formulation as a natural colorant and sweetener is recommended for preserving health and the environment.


Assuntos
Antioxidantes , Fabaceae , Ratos , Animais , Antioxidantes/química , Antocianinas/farmacologia , Antocianinas/análise , Edulcorantes , Extratos Vegetais/química , Polissacarídeos/química , Carboidratos/análise , Flores/química , Antibacterianos/farmacologia , Antibacterianos/análise , Fabaceae/química , Bebidas/análise
9.
Microorganisms ; 11(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36985234

RESUMO

Hypervirulent Klebsiella pneumoniae (hvKp) is a new emerging variant of K. pneumoniae that is increasingly reported worldwide. The variant hvKp is known to cause severe invasive community-acquired infections such as metastatic meningitis, pyogenic liver abscesses (PLA) and endophthalmitis, but its role in hospital-acquired infections (HAIs) is little known. The aim of this study was to evaluate the prevalence of hvKp among hospital-acquired (HA) K. pneumoniae infections in the intensive care unit (ICU) and to compare between hvKp and classical K. pneumoniae (cKP) regarding antimicrobial resistance pattern, virulence and molecular characteristics. The study was cross-sectional and included 120 ICU patients suffering from HA K. pneumoniae infections between January and September 2022. K. pneumoniae isolates were subjected to antimicrobial susceptibility testing and detection of extended-spectrum-ß-lactamase (ESBL) production by the Phoenix 100 automated microbiology system, string test, biofilm formation, serum resistance assay, and detection of virulence-associated genes (rmpA, rmpA2, magA, iucA) and capsular serotype-specific genes (K1, K2, K5, K20, K57) by polymerase chain reaction (PCR). Of 120 K. pneumoniae isolates, 19 (15.8%) were hvKp. The hypermucoviscous phenotype was more significantly detected in the hvKp group than in the cKP group (100% vs. 7.9%, p ≤ 0.001). The rate of resistance to different antimicrobial agents was significantly higher in the cKP group than that in the hvKp group. Fifty-three strains were identified as ESBL-producing strains, which was more frequent in the cKP group than in the hvKp group (48/101 [47.5%] vs. 5/19 [26.3%], respectively, p ≤ 0.001). The hvKP isolates were highly associated with moderate and strong biofilm formation than cKP isolates (p = 0.018 and p = 0.043 respectively). Moreover, the hvKP isolates were highly associated with intermediate sensitivity and re sistance to serum in the serum resistance assay (p = 0.043 and p = 0.016 respectively). K1, K2, rmpA, rmpA2, magA and iucA genes were significantly associated with hvKp (p ≤ 0.001, 0.004, <0.001, <0.001, 0.037 and <0.001, respectively). However, K5, K20 and K57 were not associated with hvKp. The hvKp strains have emerged as a new threat to ICU patients because of their ability to cause more severe and life-threatening infections than cKP. The string test alone as a laboratory test for screening of hvKp has become insufficient. Recently, hvKp was defined as hypermucoviscous- and aerobactin-positive. It is important to improve the awareness towards the diagnosis and management of hvKp infections.

10.
Metabolites ; 12(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35208207

RESUMO

A strain of Bacillus cereus was isolated from the Saudi Red Sea coast and identified based on culture features, biochemical characteristics, and phylogenetic analysis of 16S rRNA sequences. EPSR3 was a major fraction of exopolysaccharides (EPS) containing no sulfate and had uronic acid (28.7%). The monosaccharide composition of these fractions is composed of glucose, galacturonic acid, and arabinose with a molar ratio of 2.0: 0.8: 1.0, respectively. EPSR3 was subjected to antioxidant, antitumor, and anti-inflammatory activities. The results revealed that the whole antioxidant activity was 90.4 ± 1.6% at 1500 µg/mL after 120 min. So, the IC50 value against DPPH radical found about 500 µg/mL after 60 min. While using H2O2, the scavenging activity was 75.1 ± 1.9% at 1500 µg/mL after 60 min. The IC50 value against H2O2 radical found about 1500 µg/mL after 15 min. EPSR3 anticytotoxic effect on the proliferation of (Bladder carcinoma cell line) (T-24), (human breast carcinoma cell line) (MCF-7), and (human prostate carcinoma cell line) (PC-3) cells. The calculated IC50 for cell line T-24 was 121 ± 4.1 µg/mL, while the IC50 for cell line MCF-7 was 55.7 ± 2.3 µg/mL, and PC-3 was 61.4 ± 2.6 µg/mL. Anti-inflammatory activity was determined for EPSR3 using different methods as Lipoxygenase (LOX) inhibitory assay gave IC50 12.9 ± 1.3 µg/mL. While cyclooxygenase (COX-2) inhibitory test showed 29.6 ± 0.89 µg /mL. EPSR3 showed potent inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci. The exposure times of EPSR3 for the complete inhibition of cell viability of methicillin resistant S. aureus was found to be 5% at 60 min. Membrane stabilization inhibitory gave 35.4 ± 0.67 µg/mL. EPSR3 has antitumor activity with a reasonable margin of safety. The antitumor activity of EPSR3 may be attributed to its content from uronic acids with potential for cellular antioxidant and anticancer functional properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...