Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1397337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835859

RESUMO

Currently, the control of rhizosphere selection on farms has been applied to achieve enhancements in phenotype, extending from improvements in single root characteristics to the dynamic nature of entire crop systems. Several specific signals, regulatory elements, and mechanisms that regulate the initiation, morphogenesis, and growth of new lateral or adventitious root species have been identified, but much more work remains. Today, phenotyping technology drives the development of root traits. Available models for simulation can support all phenotyping decisions (root trait improvement). The detection and use of markers for quantitative trait loci (QTLs) are effective for enhancing selection efficiency and increasing reproductive genetic gains. Furthermore, QTLs may help wheat breeders select the appropriate roots for efficient nutrient acquisition. Single-nucleotide polymorphisms (SNPs) or alignment of sequences can only be helpful when they are associated with phenotypic variation for root development and elongation. Here, we focus on major root development processes and detail important new insights recently generated regarding the wheat genome. The first part of this review paper discusses the root morphology, apical meristem, transcriptional control, auxin distribution, phenotyping of the root system, and simulation models. In the second part, the molecular genetics of the wheat root system, SNPs, TFs, and QTLs related to root development as well as genome editing (GE) techniques for the improvement of root traits in wheat are discussed. Finally, we address the effect of omics strategies on root biomass production and summarize existing knowledge of the main molecular mechanisms involved in wheat root development and elongation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35805383

RESUMO

Antibiotic resistance is a global public health threat and is associated with high mortality due to antibiotics' inability to treat bacterial infections. Enterobacter xiangfangensis is an emerging antibiotic-resistant bacterial pathogen from the Enterobacter genus and has the ability to acquire resistance to multiple antibiotic classes. Currently, there is no effective vaccine against Enterobacter species. In this study, a chimeric vaccine is designed comprising different epitopes screened from E. xiangfangensis proteomes using immunoinformatic and bioinformatic approaches. In the first phase, six fully sequenced proteomes were investigated by bacterial pan-genome analysis, which revealed that the pathogen consists of 21,996 core proteins, 3785 non-redundant proteins and 18,211 redundant proteins. The non-redundant proteins were considered for the vaccine target prioritization phase where different vaccine filters were applied. By doing so, two proteins; ferrichrome porin (FhuA) and peptidoglycan-associated lipoprotein (Pal) were shortlisted for epitope prediction. Based on properties of antigenicity, allergenicity, water solubility and DRB*0101 binding ability, three epitopes (GPAPTIAAKR, ATKTDTPIEK and RNNGTTAEI) were used in multi-epitope vaccine designing. The designed vaccine construct was analyzed in a docking study with immune cell receptors, which predicted the vaccine's proper binding with said receptors. Molecular dynamics analysis revealed that the vaccine demonstrated stable binding dynamics, and binding free energy calculations further validated the docking results. In conclusion, these in silico results may help experimentalists in developing a vaccine against E. xiangfangensis in specific and Enterobacter in general.


Assuntos
Proteoma , Vacinas , Antibacterianos , Biologia Computacional , Computadores , Enterobacter , Epitopos/química , Simulação de Acoplamento Molecular
3.
Int J Phytoremediation ; 24(2): 156-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34081869

RESUMO

In this study, we investigate the effect of nitrogen fertilizer application rates with and without phosphorus-loaded biochar (BCP) on the productivity of tomato (Solanum lycopersicum cv GS) planted on a contaminated soil based on pot and incubation experiments. The release kinetic of toxic metals as affected by BCP was also investigated. BCP at rate of 2% (w/w) and nitrogen levels (250 and 500 mg N kg-1) were added to sandy loam soil polluted with Cd, Pb, Zn, and Cu. The experiment consisted of five treatments including: Control (C), nitrogen a rate of 250 (N250), or 500 mg kg (N500), BCP + N250, and BCP + N500. Maximum tomato growth was achieved in the soil that was treated with BCP + N500, followed by BCP + N250, while lowest one was observed in the control. Tomato yield as affected by the BCP and N-fertilization was in the descending order: BCP + N500 > BCP + N250 > N500 = N250 > C. The addition of N250, N500, BCP + N250, and BCP + N500 increased the fruit yield by 24, 31, 35, 58% in comparison with the control. Levels of Zn, Cu, and Pb in tomato fruit was in the descending order: N500> N250 > C > BCP + N500 > BCP + N250. The combined application of BCP and N-fertilization augmented the availability and uptake of essential nutrients and effectively reduced those of toxic ones. The addition of BCP + N250 decreased Zn, Cu, Cd, and Pb content in fruit of tomato by 16, 10, 54, 54, and 58%, respectively, compared to the control soil, while these decreases were 13, 16, 60, 60, and 72% in the case of BCP + N500. BCP succeeded significantly in reducing the release of toxic chemicals, which ultimately may restrict the transfer of toxic chemical to the food chain solution. Novelty statement Tomato grown on metal-contaminated soils contains high levels of toxic metals. Phosphorus-loaded biochar (BCP) reduced the negative effects of high inorganic-N rates by reducing the release of toxic metals to the soil solution. BCP enhanced the soil quality indicators and increased the soil microbe's activity.


Assuntos
Metais Pesados , Poluentes do Solo , Solanum lycopersicum , Biodegradação Ambiental , Carvão Vegetal , Fertilização , Metais Pesados/análise , Metais Pesados/toxicidade , Nitrogênio , Fósforo , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
4.
Environ Sci Pollut Res Int ; 28(33): 45745-45755, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33880695

RESUMO

Soil salinity adversely affects the growth, yield, and quality parameters of sugar beet, leading to a reduction in root and sugar yields. Improving the physical and chemical properties of salt-affected soils is essential for sustainable cultivation and sugar beet production. A field experiment was conducted at the Delta Sugar Company Research Farm, El-Hamool, Kafr El-Sheikh, Egypt, to evaluate the response of sugar beet to the application of beet sugar filter cake treated with sulfuric and phosphoric acid-treated, phosphogypsum (PG), desaline, humic acid, and molasses under saline soil conditions. The application of treated filter cake enhanced root length, diameter, and leaf area. The application of molasses enhanced root length, diameter, and leaf area as well. Application of molasses increased sugar content and root yield. The application of either treated filter cake or molasses produced the highest recoverable sugar yield. Linear regression analysis revealed that the root yield, quality index, and recoverable sugar yield increased in response to the increased availability of either Ca2+ or K content in the soil which increases in response to the application of soil amendments and molasses. The application of treated beet sugar filter cake and molasses increased the calcium, magnesium, and potassium availability in the soil. Treated filter cake is a promising organic soil amendment that enhanced the yield by 29% and yield-related traits of sugar beet by improving the physical and chemical properties of the soil.


Assuntos
Beta vulgaris , Solo , Carboidratos , Melaço , Açúcares
5.
Sci Total Environ ; 764: 142885, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33757255

RESUMO

Toxic elements cause degradation in agricultural land quality. Phytoremediation of polluted sites is the safest technique to sustain ecosystem. Field trial was established to examine the performance of two Atriplex species (A. numularia and A. amnicola) and two traditional forage plants (pearl millet and cowpea) cultivated on polluted sandy soil and clean one. The studied contaminated soil was irrigated with untreated sewage wastewater for more than 60 years and contained Zn, Cu, Pb and Cd levels excessed the permissible limits. The growth of Atriplex plants was not affected by the soil pollution, while the traditional forage plants lost 40-50% of their biomass. The roots biomass of Atriplex plants was higher by 54% than those of cowpea and pearl millet plants. The crude protein (CP) and chlorophyll in the tested species were reduced as a result of soil pollution, but the reduction was higher in pearl millet and cowpea than Atriplex plants. CP in Atriplex plants that were grown in the contaminated soil was reduced by 10%, while in the case of pearl millet and cowpea; the reduction was more than 20%. Atriplex plants were more effective in reducing the metal bioavailability than pearl millet and cowpea. Atriplex plants were able to protect the photosynthesis process in the presence of toxic elements; moreover, they produced some substances that increasing the resistance of toxic metal stress such as proline. The cultivation of metal-contaminated soil with Atriplex plants enhanced the soil quality and increased the aggregation and porosity of soil; besides, it reduced the soil salinity and concentration of toxic elements. Cultivation of halophyte and traditional fodder plants in contaminated lands is a good strategic management of the ecosystem, and the resulting plant may be used to feed animals due to their low content of pollutants or be recycled to soil organic amendments.


Assuntos
Metais Pesados , Poluentes do Solo , Animais , Biodegradação Ambiental , Ecossistema , Metais Pesados/análise , Plantas Tolerantes a Sal , Solo , Poluentes do Solo/análise
6.
Saudi J Biol Sci ; 28(2): 1433-1444, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613071

RESUMO

Wheat is an important cereal crop, and its significance is more due to compete for dietary products in the world. Many constraints facing by the wheat crop due to environmental hazardous, biotic, abiotic stress and heavy matters factors, as a result, decrease the yield. Understanding the molecular mechanism related to these factors is significant to figure out genes regulate under specific conditions. Classical breeding using hybridization has been used to increase the yield but not prospered at the desired level. With the development of newly emerging technologies in biological sciences i.e., marker assisted breeding (MAB), QTLs mapping, mutation breeding, proteomics, metabolomics, next-generation sequencing (NGS), RNA_sequencing, transcriptomics, differential expression genes (DEGs), computational resources and genome editing techniques i.e. (CRISPR cas9; Cas13) advances in the field of omics. Application of new breeding technologies develops huge data; considerable development is needed in bioinformatics science to interpret the data. However, combined omics application to address physiological questions linked with genetics is still a challenge. Moreover, viroid discovery opens the new direction for research, economics, and target specification. Comparative genomics important to figure gene of interest processes are further discussed about considering the identification of genes, genomic loci, and biochemical pathways linked with stress resilience in wheat. Furthermore, this review extensively discussed the omics approaches and their effective use. Integrated plant omics technologies have been used viroid genomes associated with CRISPR and CRISPR-associated Cas13a proteins system used for engineering of viroid interference along with high-performance multidimensional phenotyping as a significant limiting factor for increasing stress resistance in wheat.

7.
Environ Sci Pollut Res Int ; 27(23): 29156-29170, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32436090

RESUMO

Tree species (including Eucalyptus camaldulensis, Ziziphus spina-christi, Albizia lebbeck, Prosopis juliflora, Pithecellobium dulce, and Ficus altissima) were investigated to elucidate their appropriates for green belt application. Leaf samples were collected from four different locations in Riyadh: (1) residential; (2) dense traffic; (3) industrial; and (4) reference sites located approximately 20 km away from the city of Riyadh. Leaves collected from the industrial site showed the highest leaf area reduction. The smallest reduction of leaf areas was observed for F. altissima (11.6%), while the highest reduction was observed for P. juliflora (34.8%). Variations in the air pollution tolerance index (APTI) coupled with the anticipated performance index (API) for each species were examined. The APTI value of Z. spina-christi was highest (58.5) at the industrial site while the lowest APTI value was for P. juliflora (14) at the reference site. Correlation coefficient and linear regression analyses determined that the correlation between the ascorbic acid content and APTI is positive and significantly strong. Our findings indicate that urban green planning in Riyadh should include growing F. altissima on roadsides as well as in heavy industrial locations followed by Z. spina-christi and A. lebbeck according to their API and APTI performances.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental , Folhas de Planta/química , Arábia Saudita , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...