Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Chemother ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942290

RESUMO

Enterococci are Gram-positive coccus bacteria that are normally present in the gastrointestinal tract and ordinarily function commensally with humans. Very few studies have investigated the characteristics of enterococcal infections. We aimed to characterize patients with urinary tract infections (UTIs) due to Enterococci and their outcomes. This was a retrospective cohort study between June 2012-November 2022. Patients who had clinically and microbiologically confirmed Enterococcal UTI based on a urine culture positive for E. faecalis or E. faecium with a count of ≥105 CFU/mL and having urinary tract symptoms were included. A total of 396 patients were eligible and included. The patients had a median age of 61 years and were mostly females (56.8 %). The most common characteristics were hospitalization in a non-ICU ward, having a urinary catheter, and recent use of antibiotics within the last 3 months (66.4 %, 59.3 %, and 51.8 %, respectively). Infection with E. faecalis was more common than E. faecium (77.3 % vs. 22.7 %). However, the latter exhibited higher rates of antibiotic resistance (P < 0.001 to several antibiotics) and was associated with significantly higher median C-reactive protein level (26.7 vs. 13 mg/dL; P = 0.025), mortality (23 % vs. 10.1 %; P = 0.002), and median length of stay (25 vs. 11.5 days; P < 0.001). We found that most patients with enterococcal UTIs had a history of having a urinary catheter and recent antibiotic use and were mostly females and hospitalized in non-ICU wards. E. faecium-infected patients experienced more severe episodes and poorer outcomes compared to patients infected with E. faecalis; thus, would need more aggressive therapy.

2.
J Am Chem Soc ; 145(48): 26339-26349, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38011890

RESUMO

We report an in-depth investigation into the ammonia oxidation mechanism by the catalyst [RuIII(tpy)(dmabpy)NH3]3+ ([Ru(NH3)]3+). Stoichiometric reactions of [Ru(NH3)]3+ were carried out with exogenous noncoordinating bases to trigger a proposed redox disproportionation reaction, which was followed using variable-temperature NMR spectroscopy. An intermediate species was identified as a dinitrogen-bridged complex using 15N NMR and Raman spectroscopy on isotopically labeled complexes. This intermediate is proposed to derive from coupling of nitridyl species formed upon sequential redox disproportion reactions. Acetonitrile displaces the dinitrogen bridge to yield free N2. DFT calculations support this lower-energy pathway versus that previously reported for ammonia oxidation by the parent [RuIII(tpy)(bpy)NH3]3+ complex. These experimental and computational results are consistent with the interpretation of redox disproportionation involving sequential hydrogen atom transfer reactions by an amide/aminyl intermediate, [Ru(NH2)-]+ ⇔ [Ru(NH2)•]+, formed upon deprotonation of the parent complex. Control experiments employing a large excess of ammonia as a base indicate this new proposed lower-energy pathway contributes to the oxidation of ammonia to dinitrogen in conditions relevant to electrocatalysis. In addition, analogous methylamine complexes, [Ru(NH2CH3)]2+/3+, were prepared to further test the proposed mechanism. Treating [Ru(NH2CH3)]3+ with a base cleanly yields two products [Ru(NH2CH3)]2+ and [Ru(CN)]+ in an ∼3:1 ratio, fully consistent with the proposed cascade of hydrogen atom transfer reactions by an intermediate.

3.
Faraday Discuss ; 244(0): 154-168, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37186144

RESUMO

Catalyst confinement within microporous media provides the opportunity to site isolate reactive intermediates, enforce intermolecular functionalization chemistry by co-localizing reactive intermediates and substrates in molecular-scale interstices, and harness non-covalent host-guest interactions to achieve selectivities that are complementary to those accessible in solution. As part of an ongoing program to develop synthetically useful nitrogen-atom transfer (NAT) catalysts, we have demonstrated intermolecular benzylic amination of toluene at a Ru2 nitride intermediate confined within the interstices of a Ru2-based metal-organic framework (MOF), Ru3(btc)2X3 (btc = 1,3,5-benzenetricarboxylate, i.e., Ru-HKUST-1 for X = Cl). Nitride confinement within the extended MOF lattice enabled intermolecular C-H functionalization of benzylic C-H bonds in preference to nitride dimerization, which was encountered with soluble molecular analogues. Detailed study of the kinetic isotope effects (KIEs, i.e., kH/kD) of C-H amination, assayed both as intramolecular effects using partially labeled toluene and as intermolecular effects using a mixture of per-labeled and unlabeled toluene, provided evidence for restricted substrate mobility on the time scale of interstitial NAT. Analysis of these KIEs as a function of material mesoporosity provided approximate experimental values for functionalization in the absence of mass transport barriers. Here, we disclose a combined experimental and computational investigation of the mechanism of NAT from a Ru2 nitride to the C-H bond of toluene. Computed kinetic isotope effects for a H-atom abstraction (HAA)/radical rebound (RR) mechanism are in good agreement with experimental data obtained for C-H amination at the rapid diffusion limit. These results provide the first detailed analysis of the mechanism of intermolecular NAT to a C-H bond, bolster the use of KIEs as a probe of confinement effects on NAT within MOF lattices, and provide mechanistic insights unavailable by experiment because rate-determining mass transport obscured the underlying chemical kinetics.

4.
ACS Omega ; 7(49): 45341-45346, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530259

RESUMO

A three-component cascade reaction comprising cyclic ketones, arylamines, and benzoylmethylene malonates has been developed to access 4,5,6,7-tetrahydro-1H-indoles. The reaction was achieved through cooperative enamine-Brønsted catalysis in high yields with wide substrate scopes. Mechanistic studies identified the role of the Brønsted acid catalyst and revealed the formation of an imine intermediate, which was confirmed by X-ray crystallography.

5.
Inorg Chem ; 61(48): 19049-19057, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36384037

RESUMO

Nitride complexes have been invoked as catalysts and intermediates in a wide variety of transformations and are noted for their tunable acid/base properties. A density functional theory study is reported herein that maps the basicity of 3d and 4d transition metals that routinely form nitride complexes: V, Cr, Mn, Nb, Mo, Tc, and Ru. Complexes were gathered from the Cambridge Structural Database, and from the free energy of protonation, the pKb(N) of the nitride group was calculated to quantify the impact of metal identity, oxidation state, coordination number, and supporting ligand type upon metal-nitride basicity. In general, the basicity of transition metal nitrides decreases from left to right across the 3d and 4d rows and increases from 3d metals to their 4d congeners. Metal identity and oxidation state primarily determine basicity trends; however, supporting ligand types have a substantial impact on the basicity range for a given metal. Synergism of these factors in determining the overall pKb(N) values is discussed, as are the implications for the catalytic reactivity of metal nitrides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...