Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 22(6): 229-240, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33949087

RESUMO

PURPOSE: To investigate intrinsic sensitivity of an electronic portal imaging device (EPID) and the ArcCHECK detector and to use this in assessing their performance in detecting delivery variations for lung SBRT VMAT. The effect of detector spatial resolution and dose matrix interpolation on the gamma pass rate was also considered. MATERIALS AND METHODS: Fifteen patients' lung SBRT VMAT plans were used. Delivery variations (errors) were introduced by modifying collimator angles, multi-leaf collimator (MLC) field sizes and MLC field shifts by ±5, ±2, and ±1 degrees or mm (investigating 103 plans in total). EPID and ArcCHECK measured signals with introduced variations were compared to measured signals without variations (baseline), using OmniPro-I'mRT software and gamma criteria of 3%/3 mm, 2%/2 mm, 2%/1 mm, and 1%/1 mm, to test each system's basic performance. The measurement sampling resolution for each was also changed to 1 mm and results compared to those with the default detector system resolution. RESULTS: Intrinsic detector sensitivity analysis, that is, comparing measurement to baseline measurement, rather than measurement to plan, demonstrated the intrinsic constraints of each detector and indicated the limiting performance that users might expect. Changes in the gamma pass rates for ArcCHECK, for a given introduced error, were affected only by dose difference (DD %) criteria. However, the EPID showed only slight changes when changing DD%, but greater effects when changing distance-to-agreement criteria. This is pertinent for lung SBRT where the minimum dose to the target will drop dramatically with geometric errors. Detector resolution and dose matrix interpolation have an impact on the gamma results for these SBRT plans and can lead to false positives or negatives in error detection if not understood. CONCLUSION: The intrinsic sensitivity approach may help in the selection of more meaningful gamma criteria and the choice of optimal QA device for site-specific dose verification.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Pulmão , Garantia da Qualidade dos Cuidados de Saúde , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Phys Med ; 86: 6-18, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34049118

RESUMO

PURPOSE: To evaluate the Integral Quality Monitor (IQM) as a clinical dosimetry device for detecting photon beam delivery errors in clinically relevant conditions. MATERIALS AND METHODS: The IQM's ability to detect delivery errors introduced into clinical VMAT plans for two different treatment sites was assessed. This included measuring 103 nasopharynx VMAT plans and 78 lung SBRT VMAT plans with introduced errors in gantry angle (1-5°) and in MLC-defined field size and field shift (1-5 mm). The IQM sensitivity was compared to ArcCheck detector performance. Signal dependence on field position for on-axis and asymmetrically offset square field sizes from 1 × 1 cm2 to 30 × 30 cm2 was also investigated. RESULTS: The IQM detected almost all introduced clinically-significant MLC field size errors, but not some small gantry angle errors or most MLC field shift errors. The IQM sensitivity was comparable to the ArcCheck for lung SBRT, but worse for the nasopharynx plans. Differences between IQM calculated/predicted and measured signals were within ± 2% for all on-axis square fields, but up to 60% for the smallest asymmetrically offset fields at large offsets. CONCLUSION: The IQM performance was consistent and reproducible. It showed highest sensitivity to the field size errors for these plans, but did not detect some clinically-significant introduced gantry angle errors or most MLC field shift errors. The IQM calculation model is still being developed, which should improve small offset-field performance. Care is required in IQM use for plan verification or online monitoring, especially for small fields that are off-axis in the detector gradient direction.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
Med Phys ; 46(11): 5152-5158, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31419317

RESUMO

PURPOSE: Dose deposition measurements for parallel MRI-linacs have previously only shown comparisons between 0 T and a single available magnetic field. The Australian MRI-Linac consists of a magnet coupled with a dual energy linear accelerator and a 120 leaf Multi-Leaf Collimator with the radiation beam parallel to the magnetic field. Two different magnets, with field strengths of 1 and 1.5 T, were used during prototyping. This work aims to characterize the impact of the magnetic field at 1 and 1.5 T on dose deposition, possible by comparing dosimetry measured at both magnetic field strengths to measurements without the magnetic field. METHODS: Dose deposition measurements focused on a comparison of beam quality (TPR20/10 ), PDD, profiles at various depths, surface doses, and field size output factors. Measurements were acquired at 0, 1, and 1.5 T. Beam quality was measured using an ion chamber in solid water at isocenter with appropriate TPR20/10 buildup. PDDs and profiles were acquired via EBT3 film placed in solid water either parallel or perpendicular to the radiation beam. Films at surface were used to determine surface dose. Output factors were measured in solid water using an ion chamber at isocenter with 10 cm solid water buildup. RESULTS: Beam quality was within ±0.5% of the 0 T value for the 1 and 1.5 T magnetic field strengths. PDDs and profiles showed agreement for the three magnetic field strengths at depths beyond 20 mm. Deposited dose increased at shallower depths due to electron focusing. Output factors showed agreement within 1%. CONCLUSION: Dose deposition at depth for a parallel MRI-linac was not significantly impacted by either a 1 or 1.5 T magnetic field. PDDs and profiles at shallow depths and surface dose measurements showed significant differences between 0, 1, and 1.5 T due to electron focusing.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas
4.
Phys Med ; 59: 37-46, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30928064

RESUMO

PURPOSE: To study the sensitivity of an Electronic Portal Imaging Device (EPID) in detecting delivery errors for VMAT lung stereotactic body radiotherapy (SBRT) using the Collapsed Arc method. METHODS: Baseline VMAT plans and plans with errors intentionally introduced were generated for 15 lung SBRT patients. Three types of errors were introduced by modifying collimator angles and multi-leaf collimator (MLC) field sizes (MLCFS) and MLC shifts by ±5, ±2, and ±1° or millimeters. A total of 103 plans were measured with EPID on an Elekta Synergy Linear Accelerator (Agility MLC) and compared to both the original treatment planning system (TPS) Collapsed Arc dose matrix and the no-error plan baseline EPID measurements. Gamma analysis was performed using the OmniPro-I'mRT (IBA Dosimetry) software and gamma criteria of 1%/1 mm, 2%/1 mm, 2%/2 mm, and 3%/3. RESULTS: When the error-introduced EPID measured dose matrices were compared to the TPS matrices, the majority of simulated errors were detected with gamma tolerance of 2%/1 mm and 1%/1 mm. When the error-introduced EPID measured dose matrices were compared to the baseline EPID measurements, all the MLCFS and MLC shift errors, and ±5°collimator errors were detected using 2%/1 mm and 1%/1 mm gamma criteria. CONCLUSION: This work demonstrates the feasibility and effectiveness of the collapsed arc technique and EPID for pre-treatment verification of lung SBRT VMAT plans. The EPID was able to detect the majority of MLC and the larger collimator errors with sensitivity to errors depending on the gamma tolerances.


Assuntos
Equipamentos e Provisões Elétricas , Neoplasias Pulmonares/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador , Erros de Configuração em Radioterapia , Radioterapia de Intensidade Modulada/instrumentação , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica
6.
Phys Med ; 49: 119-128, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29685425

RESUMO

PURPOSE: To study the sensitivity of the ArcCHECK in detecting delivery errors for lung stereotactic body radiotherapy (SBRT) using the Volumetric Modulated Arc Therapy (VMAT) technique and to evaluate the sensitivity of eight global and local gamma tolerances with different cut-off percentages. METHODS: Baseline VMAT plans were generated for 15 lung SBRT patients. We delivered the smallest errors(gantry, collimator, and multileaf collimator MLC) which had ≥ ±2% dose difference in the modified treatment plans compared to the baseline plan (the clinical significance of those errors were assessed in our previous study. A total of 100 plan in which 15 baseline plans were measured using the ArcCheck detector along with ion chamber measurements. The sensitivity of the global and local gamma-index method using criteria of 1%/1 mm, 2%/1 mm, 2%/2 mm, and 3%/3 mm was investigated. RESULTS: The gamma (γ) pass rates for these plans exhibited considerable spread. The majority of simulated errors were not detected. Broadly similar detection levels were achieved with the different gamma criteria and cut-offs. Combining ion chamber measurements with ArcCHECK did not improve error detection. CONCLUSIONS: Commonly adopted gamma criteria are not sensitive enough to validate lung SBRT VMAT plans at the 2% dose difference level. The error detection levels are fairly consistent despite changes in gamma criteria and cut-offs. The choice of gamma criteria was not significant and there was no clear benefit in tightening the gamma criteria.


Assuntos
Erros Médicos/prevenção & controle , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Neoplasias Pulmonares/radioterapia , Radiometria
7.
Med Phys ; 45(1): 479-487, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29156098

RESUMO

PURPOSE: Longitudinal magnetic fields narrow beam penumbra and tighten lateral spread of secondary electrons in air cavities, including lung tissue. Gafchromic® EBT3 film was used to investigate differences between penumbra in solid water and solid lung, without a magnetic field (0 T) and with two field strengths (0.9 and 1.5 T). METHODS: The first prototype of the Australian MRI-linac consisted of a 1.5 T Siemens Sonata MRI and Varian industrial linatron (nominal 4 MV). The second prototype replaced the Sonata with a 1.0 T Agilent split-bore magnet. Measurements were completed at 0.9 T to maintain the same source-to-surface distance between set-ups. Gammex-rmi® solid water with 50 mm of CIRS solid lung inserted as a lung cavity was positioned inside each magnet. This was compared to the same set-up with solid water only, where film measurements were completed at solid water equivalent depths corresponding to entrance interface/mid/exit interface positions of solid lung from the first set-up. Multileaf collimator (MLC)-defined field sizes were set to 3 × 3 cm2 and 10 × 10 cm2 . The 80%-20% penumbral width was determined. RESULTS: Under 1.5 T conditions, penumbra narrowing occurred up to 4.4 ± 0.1 mm compared to 0 T. As expected, the effect was less for 0.9 T, which resulted in a maximum narrowing of 2.5 ± 0.1 mm. Exit profile penumbra were more affected than entrance penumbra by up to 2.6 ± 0.2 mm. The 1.5 T field brought the solid water and lung penumbral widths more into alignment by a maximum difference of 0.4 ± 0.1 mm. CONCLUSIONS: The trimming of penumbral widths due to magnetic fields in solid water and lung was demonstrated and compared to 0 T. The 0.9 and 1.5 T field trimmed the penumbra by up to 2.5 ± 0.1 mm and 4.4 ± 0.1 mm respectively.


Assuntos
Neoplasias Pulmonares/radioterapia , Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas/instrumentação , Elétrons , Dosimetria Fotográfica , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos da radiação , Neoplasias Pulmonares/diagnóstico por imagem , Campos Magnéticos , Imagens de Fantasmas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...