Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 94: 117479, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37769443

RESUMO

Chronic diseases such as cystic fibrosis, inflammatory bowel diseases, rheumatoid arthritis, and cardiovascular illness have been linked to a decrease in selenium levels and an increase in oxidative stress. Selenium is an essential trace element that exhibits antioxidant properties, with selenocysteine enzymes like glutathione peroxidase being particularly effective at reducing peroxides. In this study, a series of synthetic organoselenium compounds were synthesized and evaluated for their potential antioxidant activities. The new selenohydantoin molecules were inspired by selenoneine and synthesized using straightforward methods. Their antioxidant potential was evaluated and proven using classical radical scavenging and metal-reducing methods. The selenohydantoin derivatives exhibited glutathione peroxidase-like activity, reducing hydroperoxides. Theoretical calculations using Density Functional Theory (DFT) revealed the selenone isomer to be the only one occurring in solution, with selenolate as a possible tautomeric form in the presence of a basic species. Cytocompatibility assays indicated that the selenohydantoin derivatives were non-toxic to primary human aortic smooth muscle cells, paving the way for further biological evaluations of their antioxidant activity. The results suggest that selenohydantoin derivatives with trifluoro-methyl (-CF3) and chlorine (-Cl) substituents have significant activities and could be potential candidates for further biological trials. These compounds may contribute to the development of effective therapies for chronic diseases such cardiovascular diseases.

2.
Curr Pharm Des ; 25(15): 1707-1716, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267853

RESUMO

Selenium is an essential non-metal trace element, and the imbalance in the bioavailability of selenium is associated with many diseases ranking from acute respiratory distress syndrome, myocardial infarction and renal failure (Se overloading) to diseases associated with chronic inflammation like inflammatory bowel diseases, rheumatoid arthritis, and atherosclerosis (Se unload). The only source of selenium is the diet (animal and cereal sources) and its intestinal absorption is limiting for selenocysteine and selenomethionine synthesis and incorporation in selenoproteins. In this review, after establishing the link between selenium and inflammatory diseases, we envisaged the potential of selenium nanoparticles and organic selenocompounds to compensate the deficit of selenium intake from the diet. With high selenium loading, nanoparticles offer a low dosage to restore selenium bioavailability whereas organic selenocompounds can play a role in the modulation of their antioxidant or antiinflammatory activities.


Assuntos
Inflamação/terapia , Selênio/farmacologia , Oligoelementos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Disponibilidade Biológica , Dieta , Humanos , Nanopartículas , Selênio/administração & dosagem , Selenocisteína , Selenometionina , Selenoproteínas , Oligoelementos/administração & dosagem
3.
Antioxidants (Basel) ; 7(4)2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29677095

RESUMO

Nanosizing represents a straight forward technique to unlock the biological activity of complex plant materials. The aim of this study was to develop herbal nanoparticles with medicinal value from dried leaves and stems of Loranthus micranthus with the aid of ball-milling, high speed stirring, and high-pressure homogenization techniques. The milled nanoparticles were characterized using laser diffraction analysis, photon correlation spectroscopy analysis, and light microscopy. The average size of leaf nanoparticles was around 245 nm and that of stem nanoparticles was around 180 nm. The nanoparticles were tested for their antimicrobial and nematicidal properties against a Gram-negative bacterium Escherichia coli, a Gram-positive bacterium Staphylococcus carnosus, fungi Candida albicans and Saccharomyces cerevisiae, and a nematode Steinernemafeltiae. The results show significant activities for both leaf and (particularly) stem nanoparticles of Loranthus micranthus on all organisms tested, even at a particle concentration as low as 0.01% (w/w). The results observed indicate that nanoparticles (especially of the stem) of Loranthus micranthus could serve as novel antimicrobial agents with wide-ranging biomedical applications.

4.
Medchemcomm ; 9(12): 1994-1999, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30647877

RESUMO

S-Nitrosothiols are ˙NO releasing agents renowned for vasodilatory and antioxidant properties. O2˙- promotes their decomposition, forming highly aggressive peroxynitrite ions (ONOO-). Since the production of O2˙- can be controlled by enzymes or by visible light, such otherwise harmless components can be turned into effective antimicrobial and nematicidal combinations with numerous potential applications in medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...