Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26946, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38449653

RESUMO

Scoliosis is a medical condition marked by an abnormal lateral curvature of the spine, typically forming a sideways "S" or "C" shape. Mechanically, it manifests as a three-dimensional deformation of the spine, potentially leading to diverse clinical issues such as pain, diminished lung capacity, and postural abnormalities. This research specifically concentrates on the Adolescent Idiopathic Scoliosis (AIS) population, as existing literature indicates a tendency for this type of scoliosis to deteriorate over time. The principal aim of this investigation is to pinpoint the biomechanical factors contributing to the progression of scoliosis by employing Finite Element Analysis (FEA) on computed tomography (CT) data collected from adolescent patients. By accurately modeling the spinal curvature and related deformities, the stresses and strains experienced by vertebral and intervertebral structures under diverse loading conditions can be simulated and quantified. The transient simulation incorporated damping and inertial terms, along with the static stiffness matrix, to enhance comprehension of the response. The findings of this study indicate a significant reduction in the Cobb angle, halving from its initial value, decreasing from 35° to 17°. In degenerative scoliosis, failure was predicted at 109 cycles, with the Polypropylene brace deforming by 10.34 mm, while the Nitinol brace exhibited significantly less deformation at 7.734 mm. This analysis contributes to a better understanding of the biomechanical mechanisms involved in scoliosis development and can assist in the formulation of more effective treatment strategies. The FEA simulation emerges as a valuable supplementary tool for exploring various hypothetical scenarios by applying diverse loads at different locations to enhance comprehension of the effectiveness of proposed interventions.

2.
PLoS One ; 19(3): e0300685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512969

RESUMO

Scoliosis is a medical condition in which a person's spine has an abnormal curvature and Cobb angle is a measurement used to evaluate the severity of a spinal curvature. Presently, automatic Existing Cobb angle measurement techniques require huge dataset, time-consuming, and needs significant effort. So, it is important to develop an unsupervised method for the measurement of Cobb angle with good accuracy. In this work, an unsupervised local center of mass (LCM) technique is proposed to segment the spine region and further novel Cobb angle measurement method is proposed for accurate measurement. Validation of the proposed method was carried out on 2D X-ray images from the Saudi Arabian population. Segmentation results were compared with GMM-Based Hidden Markov Random Field (GMM-HMRF) segmentation method based on sensitivity, specificity, and dice score. Based on the findings, it can be observed that our proposed segmentation method provides an overall accuracy of 97.3% whereas GMM-HMRF has an accuracy of 89.19%. Also, the proposed method has a higher dice score of 0.54 compared to GMM-HMRF. To further evaluate the effectiveness of the approach in the Cobb angle measurement, the results were compared with Senior Scoliosis Surgeon at Multispecialty Hospital in Saudi Arabia. The findings indicated that the segmentation of the scoliotic spine was nearly flawless, and the Cobb angle measurements obtained through manual examination by the expert and the algorithm were nearly identical, with a discrepancy of only ± 3 degrees. Our proposed method can pave the way for accurate spinal segmentation and Cobb angle measurement among scoliosis patients by reducing observers' variability.


Assuntos
Escoliose , Humanos , Escoliose/diagnóstico por imagem , Arábia Saudita , Reprodutibilidade dos Testes , Coluna Vertebral/diagnóstico por imagem , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...