Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JMIR Med Inform ; 9(5): e25237, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34028357

RESUMO

BACKGROUND: Predicting the risk of glycated hemoglobin (HbA1c) elevation can help identify patients with the potential for developing serious chronic health problems, such as diabetes. Early preventive interventions based upon advanced predictive models using electronic health records data for identifying such patients can ultimately help provide better health outcomes. OBJECTIVE: Our study investigated the performance of predictive models to forecast HbA1c elevation levels by employing several machine learning models. We also examined the use of patient electronic health record longitudinal data in the performance of the predictive models. Explainable methods were employed to interpret the decisions made by the black box models. METHODS: This study employed multiple logistic regression, random forest, support vector machine, and logistic regression models, as well as a deep learning model (multilayer perceptron) to classify patients with normal (<5.7%) and elevated (≥5.7%) levels of HbA1c. We also integrated current visit data with historical (longitudinal) data from previous visits. Explainable machine learning methods were used to interrogate the models and provide an understanding of the reasons behind the decisions made by the models. All models were trained and tested using a large data set from Saudi Arabia with 18,844 unique patient records. RESULTS: The machine learning models achieved promising results for predicting current HbA1c elevation risk. When coupled with longitudinal data, the machine learning models outperformed the multiple logistic regression model used in the comparative study. The multilayer perceptron model achieved an accuracy of 83.22% for the area under receiver operating characteristic curve when used with historical data. All models showed a close level of agreement on the contribution of random blood sugar and age variables with and without longitudinal data. CONCLUSIONS: This study shows that machine learning models can provide promising results for the task of predicting current HbA1c levels (≥5.7% or less). Using patients' longitudinal data improved the performance and affected the relative importance for the predictors used. The models showed results that are consistent with comparable studies.

2.
JMIR Med Inform ; 8(7): e18963, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32618575

RESUMO

BACKGROUND: Electronic health record (EHR) systems generate large datasets that can significantly enrich the development of medical predictive models. Several attempts have been made to investigate the effect of glycated hemoglobin (HbA1c) elevation on the prediction of diabetes onset. However, there is still a need for validation of these models using EHR data collected from different populations. OBJECTIVE: The aim of this study is to perform a replication study to validate, evaluate, and identify the strengths and weaknesses of replicating a predictive model that employed multiple logistic regression with EHR data to forecast the levels of HbA1c. The original study used data from a population in the United States and this differentiated replication used a population in Saudi Arabia. METHODS: A total of 3 models were developed and compared with the model created in the original study. The models were trained and tested using a larger dataset from Saudi Arabia with 36,378 records. The 10-fold cross-validation approach was used for measuring the performance of the models. RESULTS: Applying the method employed in the original study achieved an accuracy of 74% to 75% when using the dataset collected from Saudi Arabia, compared with 77% obtained from using the population from the United States. The results also show a different ranking of importance for the predictors between the original study and the replication. The order of importance for the predictors with our population, from the most to the least importance, is age, random blood sugar, estimated glomerular filtration rate, total cholesterol, non-high-density lipoprotein, and body mass index. CONCLUSIONS: This replication study shows that direct use of the models (calculators) created using multiple logistic regression to predict the level of HbA1c may not be appropriate for all populations. This study reveals that the weighting of the predictors needs to be calibrated to the population used. However, the study does confirm that replicating the original study using a different population can help with predicting the levels of HbA1c by using the predictors that are routinely collected and stored in hospital EHR systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...