Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 430: 108698, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36739641

RESUMO

The superior olivary complex (SOC) is a collection of nuclei in the hindbrain of mammals with numerous roles in hearing, including localization of sound sources in the environment, encoding temporal and spectral elements of sound, and descending modulation of the cochlea. While there have been several investigations of the SOC in primates, there are discrepancies in the descriptions of nuclear borders and even the presence of certain cell groups among studies and species. Herein, we aimed to clarify some of these issues by characterizing the SOC from chimpanzees using Nissl staining, quantitative morphometry and immunohistochemistry. We found the medial superior olive (MSO) to be the largest of the SOC nuclei and the arrangement of its neurons and peri-MSO to be very similar to humans. Additionally, we found neurons in the medial nucleus of the trapezoid body (MNTB) to be immunopositive for the calcium binding protein calbindin. Further, most neurons in the MNTB, and some neurons in the lateral nucleus of the trapezoid body were associated with large, calretinin-immunoreactive calyx terminals. Together, these findings indicate the organization of the SOC of chimpanzees is organized very similar to the SOC in humans and suggests modifications to this region among species consistent with differences in head/body size, restricted hearing range and sensitivity to low frequency sounds.


Assuntos
Pan troglodytes , Complexo Olivar Superior , Animais , Humanos , Vias Auditivas/fisiologia , Neurônios/fisiologia , Núcleo Olivar/fisiologia , Complexo Olivar Superior/fisiologia
2.
Hear Res ; 405: 108243, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33865019

RESUMO

Excitotoxic injury during the neonatal period has been shown to result in neurodegenerative changes in several different brain regions. Exposure to monosodium glutamate (MSG) during the first two postnatal weeks results in glutamate neurotoxicity in the cochlea and has been shown to result in damage to cochlear hair cells and fewer neurons in the spiral ganglion. Further, we have shown that such exposure results in fewer neurons in the cochlear nucleus and superior olivary complex and abnormal expression of the calcium binding proteins calbindin and calretinin. Based on these findings, we hypothesized that neonatal MSG exposure would result in loss of neurons at more rostral levels in the auditory brainstem, and this exposure would result in abnormal brainstem auditory evoked potentials. We identified a significantly lower density of neurons in the spiral ganglion, heterogenous loss of neurons in the globular bushy cell-trapezoid body circuit, and fewer neurons in the nuclei of the lateral lemniscus and central nucleus of the inferior colliculus. The most severe loss of neurons was found in the inferior colliculus. Click-evoked auditory brainstem responses revealed significantly higher thresholds and longer latency responses, but these did not deteriorate with age. These results, together with our previous findings, indicate that neonatal exposure to MSG results in fewer neurons throughout the entire auditory brainstem and results in abnormal auditory brainstem responses.


Assuntos
Tronco Encefálico , Núcleo Coclear , Colículos Inferiores , Vias Auditivas , Glutamato de Sódio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...