Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(9)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37754394

RESUMO

BACKGROUND: Cervical intraepithelial neoplasia, the predisposing factor for cervical cancer (CC), is caused by human papillomavirus (HPV) infection and can be treated with imiquimod (IMQ). However, poor water solubility and side effects such as local inflammation can render IMQ ineffective. The aim of this study is to design a prolonged release nano system in combination with mucoadhesive-thermosensitive properties for an effective vaginal drug delivery. METHODS: Polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL), poly lactide-co-caprolactone (PLA-PCL), and poly L-lactide-co-caprolactone-co-glycolide (PLGA-PCL) were used to create IMQ nanoparticles. Chitosan (CS) was then added to the surfaces of the IMQ NPs for its mucoadhesive properties. The NPs were then incorporated into poloxamer hydrogels. The NPs' size and morphology, encapsulation efficiency (EE), in vitro drug release, gel characterization, ex vivo drug permeation, and in vitro safety and efficacy were characterized. RESULTS: Two batches of NPs were prepared, IMQ NPs and CS-coated NPs (CS-IMQ NPs). In general, both types of NPs were uniformly spherical in shape with average particle sizes of 237.3 ± 4.7 and 278.2 ± 5.4 nm and EE% of 61.48 ± 5.19% and 37.73 ± 2.88 for IMQ NPs and CS-IMQ NPs, respectively. Both systems showed prolonged drug release of about 80 and 70% for IMQ NPs and CS-IMQ NPs, respectively, within 48 h. The gelation temperatures for the IMQ NPs and CS-IMQ NPs were 30 and 32 °C, respectively; thus, suitable for vaginal application. Although ex vivo permeability showed that CS-IMQ NPs showed superior penetration compared to IMQ NPs, both systems enhanced drug penetration (283 and 462 µg/cm2 for IMQ NPs and CS-IMQ NPs, respectively) relative to the control (60 µg/cm2). Both systems reduced the viability of cervical cancer cells, with a minimal effect of the normal vaginal epithelium. However, IMQ NPs exhibited a more pronounced cytotoxic effect. Both systems were able to reduce the production of inflammatory cytokines by at least 25% in comparison to free IMQ. CONCLUSION: IMQ and CS-IMQ NP in situ gels enhanced stability and drug release, and improved IMQ penetration through the vaginal tissues. Additionally, the new systems were able to increase the cytotoxic effect of IMQ against CC cells with a reduction in inflammatory responses. Thus, we believe that these systems could be a good alternative to commercial IMQ systems for the management of CC.

2.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373112

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in food, cosmetics, and biomedical research. However, human safety following exposure to TiO2 NPs remains to be fully understood. The aim of this study was to evaluate the in vitro safety and toxicity of TiO2 NPs synthesized via the Stöber method under different washing and temperature conditions. TiO2 NPs were characterized by their size, shape, surface charge, surface area, crystalline pattern, and band gap. Biological studies were conducted on phagocytic (RAW 264.7) and non-phagocytic (HEK-239) cells. Results showed that washing amorphous as-prepared TiO2 NPs (T1) with ethanol while applying heat at 550 °C (T2) resulted in a reduction in the surface area and charge compared to washing with water (T3) or a higher temperature (800 °C) (T4) and influenced the formation of crystalline structures with the anatase phase in T2 and T3 and rutile/anatase mixture in T4. Biological and toxicological responses varied among TiO2 NPs. T1 was associated with significant cellular internalization and toxicity in both cell types compared to other TiO2 NPs. Furthermore, the formation of the crystalline structure induced toxicity independent of other physicochemical properties. Compared with anatase, the rutile phase (T4) reduced cellular internalization and toxicity. However, comparable levels of reactive oxygen species were generated following exposure to the different types of TiO2, indicating that toxicity is partially driven via non-oxidative pathways. TiO2 NPs were able to trigger an inflammatory response, with varying trends among the two tested cell types. Together, the findings emphasize the importance of standardizing engineered nanomaterial synthesis conditions and evaluating the associated biological and toxicological consequences arising from changes in synthesis conditions.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Temperatura , Nanopartículas/toxicidade , Nanopartículas/química , Titânio/toxicidade , Titânio/química , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/química
3.
Molecules ; 28(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770926

RESUMO

This study investigates the development of topically applied non-invasive amino-functionalized silica nanoparticles (AMSN) and O-Carboxymethyl chitosan-coated AMSN (AMSN-CMC) for ocular delivery of 5-Fluorouracil (5-FU). Particle characterization was performed by the DLS technique (Zeta-Sizer), and structural morphology was examined by SEM and TEM. The drug encapsulation and loading were determined by the indirect method using HPLC. Physicochemical characterizations were performed by NMR, TGA, FTIR, and PXRD. In vitro release was conducted through a dialysis membrane in PBS (pH 7.4) using modified Vertical Franz diffusion cells. The mucoadhesion ability of the prepared nanoparticles was tested using the particle method by evaluating the change in zeta potential. The transcorneal permeabilities of 5-FU from AMNS-FU and AMSN-CMC-FU gel formulations were estimated through excised goat cornea and compared to that of 5-FU gel formulation. Eye irritation and ocular pharmacokinetic studies from gel formulations were evaluated in rabbit eyes. The optimum formulation of AMSN-CMC-FU was found to be nanoparticles with a particle size of 249.4 nm with a polydispersity of 0.429, encapsulation efficiency of 25.8 ± 5.8%, and drug loading capacity of 5.2 ± 1.2%. NMR spectra confirmed the coating of AMSN with the CMC layer. In addition, TGA, FTIR, and PXRD confirmed the drug loading inside the AMSN-CMC. Release profiles showed 100% of the drug was released from the 5-FU gel within 4 h, while AMSN-FU gel released 20.8% of the drug and AMSN-CMC-FU gel released around 55.6% after 4 h. AMSN-CMC-FU initially exhibited a 2.45-fold increase in transcorneal flux and apparent permeation of 5-FU compared to 5-FU gel, indicating a better corneal permeation. Higher bioavailability of AMSN-FU and AMSN-CMC-FU gel formulations was found compared to 5-FU gel in the ocular pharmacokinetic study with superior pharmacokinetics parameters of AMSN-CMC-FU gel. AMSN-CMC-FU showed 1.52- and 6.14-fold higher AUC0-inf in comparison to AMSN-FU and 5-FU gel, respectively. AMSN-CMC-FU gel and AMSN-FU gel were "minimally irritating" to rabbit eyes but showed minimal eye irritation potency in comparison to the 5 FU gel. Thus, the 5-FU loaded in AMSN-CMC gel could be used as a topical formulation for the treatment of ocular cancer.


Assuntos
Quitosana , Nanopartículas , Animais , Coelhos , Fluoruracila/química , Quitosana/química , Diálise Renal , Nanopartículas/química , Córnea , Tamanho da Partícula , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos
4.
J Drug Target ; 22(7): 648-57, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24892741

RESUMO

BACKGROUND: Hyaluronan (HA) is a ligand for the CD44 receptor which is crucial to cancer cell proliferation and metastasis. High levels of CD44 expression in many cancers have encouraged the development of HA-based carriers for anti-cancer therapeutics. PURPOSE: The objective of this study was to determine whether HA conjugation of anticancer drugs impacts CD44-specific HA-drug uptake and disposition by human head and neck cancer cells. METHODS: The internalization and cellular disposition of hyaluronan-doxorubicin (HA-DOX), hyaluronan-cisplatin (HA-Pt), and hyaluronan-cyanine7 (HA-Cy7) conjugates were investigated by inhibiting endocytosis pathways, and by inhibiting the CD44-mediated internalization pathways that are known to mediate hyaluronan uptake in vitro. RESULTS: Cellular internalization of HA was regulated by CD44 receptors. In mouse xenografts, HA conjugation significantly enhanced tumor cell uptake compared to unconjugated drugs. DISCUSSION: The results suggested that the main mechanism of HA-based conjugate uptake may be active transport via CD44 in conjunction with a clathrin-dependent endocytic pathway. Other HA receptors, hyaluronan-mediated motility receptor (RHAMM) and lymphatic vessel endothelial hyaluronan receptor (LYVE-1), did not play a significant role in conjugate uptake. CONCLUSIONS: HA conjugation significantly increased CD44-mediated drug uptake and extended the residence time of drugs in tumor cells.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Nanoconjugados/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Cisplatino/química , Cisplatino/farmacocinética , Cisplatino/uso terapêutico , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Humanos , Ligantes , Camundongos SCID , Microscopia de Fluorescência , Estrutura Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...