Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e33281, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022021

RESUMO

There is a growing need to mainstream orphan or underutilized crops to enhance nutritional security and sustainable agriculture. Among these, Perilla frutescens L. is an important crop due to its rich nutritional and phytochemical content which makes it significant in nutrition, medicine, and industrial sector. Perilla seeds are mainly rich in ω-3 fatty acids, dietary fiber, amino acids, vitamins, and minerals, high α-linolenic acid, which contributes to their health benefits. This review explores the nutritional profile of perilla seeds and highlights its unique composition compared to other oilseed crops. It also analyzes the phytochemical components of perilla seeds and their various biological activities, including antioxidant, antidiabetic, antiobesity, cardioprotective, anticancer, antimicrobial, neuroprotective, and anti-inflammatory effects. These activities demonstrate the potential of perilla seeds in both pharmaceutical and food sectors. The review also covers recent advancements in genomics and transgenic research discussing potential areas for crop improvement. Additionally, it explores the use of perilla seeds in functional foods, blending perilla oil with other oils, and their applications in enhancing product formulations. This review offers valuable insights for researchers, students, policymakers, environmentalists, and industry professionals by detailing the potential of perilla seeds across various sectors. The findings support sustainable agriculture, crop diversification, and innovative product development, thus contributing to the integration of perilla into mainstream agriculture.

2.
Food Funct ; 14(3): 1595-1607, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36683429

RESUMO

Pearl millet (PM) is a nutri-cereal rich in various macro and micronutrients required for a balanced diet. Its grains have a unique phenolic and micronutrient composition; however, the lower bioaccessibility of nutrients and rancidity of flour during storage are the major constraints in its consumption and wide popularity. Here, to explore the effect of different thermal processing methods, i.e., hydrothermal (HT), microwave (MW), and infrared (IR) treatments, on the digestion of starch, phenolics, and microelements (Fe and Zn), an in vitro digestion model consisting of oral, gastric and intestinal digestion was applied to PM rotis. The hydrothermally treated PM roti was promising as it showed lower inherent glycemic potential (60.4%) than the untreated sample (72.4%) and less enzymatic activities associated with rancidity in PM flour. FTIR revealed an increased ratio of 1047/1022 cm-1 in the hydrothermally treated sample, reflecting the enhancement of the structurally ordered degree and compactness of starch compared to other thermal treatments. A tighter and more compact microstructure with an agglomeration of starch in the hydrothermally treated PM flour was observed by SEM. These structural changes could provide a better understanding of the lower starch digestion rate in the hydrothermally treated flour. However, HT treatment significantly (P < 0.05) reduced the bioaccessibility of phenolics (10.6%) compared to native PM rotis and slightly reduced the Fe (2%) and Zn (3.2%) bioaccessibility present in PM rotis.


Assuntos
Pennisetum , Pennisetum/química , Micronutrientes/análise , Fenóis/análise , Grão Comestível/química , Farinha/análise , Amido/química , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...