Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Prod Res ; 36(16): 4231-4237, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34520289

RESUMO

This study aims to evaluate the anti-Leishmania major and the lung adenocarcinoma (A549) cytotoxicity of Withania somnifera root and fruit. The total extracts were obtained by homogenisation in aqueous MeOH, and the sub-extracts [n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH), and methanol (MeOH)] were obtained by flash chromatography. The activity evaluation showed that n-BuOH sub-extracts from root and fruit exhibited noticeable antileishmanial promastigote properties. The n-hexane and EtOAc sub-extracts from both organs, and the MeOH sub-extract from the fruit exerted mild to moderate effects on the promastigotes. In-vitro growth-inhibitory test results on axenic amastigote and cytotoxicity testing on macrophages (RAW264.7), the parasite-host at the amastigote stage, revealed that the activity was mainly concentrated in the root EtOAc and n-BuOH sub-extracts and to a lesser extent the fruit MeOH and EtOAc, and the root n-hexane sub-extracts. Only the roots' EtOAc and n-BuOH sub-extracts demonstrated low cytotoxicity on the A549 cell line.


Assuntos
Adenocarcinoma de Pulmão , Antiprotozoários , Withania , Frutas , Metanol , Extratos Vegetais/química , Raízes de Plantas/química , Withania/química
2.
Polymers (Basel) ; 13(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809662

RESUMO

Over the last twenty years, researchers have focused on the potential applications of electrospinning, especially its scalability and versatility. Specifically, electrospun nanofiber scaffolds are considered an emergent technology and a promising approach that can be applied to biosensing, drug delivery, soft and hard tissue repair and regeneration, and wound healing. Several parameters control the functional scaffolds, such as fiber geometrical characteristics and alignment, architecture, etc. As it is based on nanotechnology, the concept of this approach has shown a strong evolution in terms of the forms of the materials used (aerogels, microspheres, etc.), the incorporated microorganisms used to treat diseases (cells, proteins, nuclei acids, etc.), and the manufacturing process in relation to the control of adhesion, proliferation, and differentiation of the mimetic nanofibers. However, several difficulties are still considered as huge challenges for scientists to overcome in relation to scaffolds design and properties (hydrophilicity, biodegradability, and biocompatibility) but also in relation to transferring biological nanofibers products into practical industrial use by way of a highly efficient bio-solution. In this article, the authors review current progress in the materials and processes used by the electrospinning technique to develop novel fibrous scaffolds with suitable design and that more closely mimic structure. A specific interest will be given to the use of this approach as an emergent technology for the treatment of bacteria and viruses such as COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...