Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Biochem ; 45(1): e13546, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33145794

RESUMO

Although studies have shown that ginger, as an herbal remedy and zinc are able to improve inflammation, oxidative stress, autophagy, and metabolism of lipid and glucose, their molecular mechanisms are unknown. Therefore, this study was aimed to examine the therapeutic effects of ginger with zinc supplement for eight weeks on fructose-induced metabolic syndrome (MS). Ninety-six adult male Sprague Dawley rats (220 g ± 20) were randomly assigned to twelve controlled and treated groups. After the last treatment session, the level of lipid profiles, glucose, insulin, and leptin as metabolic factors and liver enzymes as biomarkers to evaluate liver function in serum were measured. The level of antioxidant enzymes and lipid peroxidation to evaluate the oxidative status and the TNF-α level as a biomarker to assess the state of inflammation in liver were also measured. The level of zinc along with the expression of NF-κB, mTORC1, PPAR-α, SREBP-1c, and Nrf2 in liver was also evaluated. The level of metabolic factors and liver enzymes in serum along with lipid peroxidation and TNF-α in liver increased; zinc and antioxidant enzymes levels decreased in rats with MS compared to control rats (p < .05). The hepatic expression of SREBP-1c, NF-κB and mTORC1 were upregulated and the expression of PPAR-α and Nrf2 were downregulated in rats with MS compared to control rats (p < .05). Treatment with different doses of ginger, zinc, and the combination of them could improve metabolic, inflammatory oxidative stress factors, and expression of the above genes in rats with MS compared to the MS group (p < .05). It can be concluded that ginger, zinc, and the combination of them could improve oxidative damage, inflammation, and autophagy induced by fructose and could adjust the glucose and lipid metabolism and the homeostasis of zinc in rats with MS. PRACTICAL APPLICATIONS: Due to the increasing prevalence of metabolic diseases, the use of plant compounds such as ginger has attracted widespread attention. Ginger as an herbal remedy with predominant pharmacological properties due to its availability, cheapness, and lack of side effects is also very popular for the treatment of metabolic disorders in folk medicine. Moreover, enhancing its medicinal properties with supplements such as zinc can be widely welcomed. This study was actually performed with the aim of investigating the effects of ginger + zinc supplement on MS. The results showed that the ginger + zinc supplement could improve oxidative damage, inflammation, and autophagy caused by fructose and adjust the glucose and lipid metabolism and the homeostasis of zinc in rats with MS. The results of this study support the hypothesis that ginger can be used as a very suitable option for the production of medicinal supplements to maintain human health.


Assuntos
Síndrome Metabólica , Zingiber officinale , Animais , Frutose , Fígado , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/tratamento farmacológico , Fator 2 Relacionado a NF-E2 , NF-kappa B/genética , PPAR alfa/genética , Pós , Ratos , Ratos Sprague-Dawley , Proteína de Ligação a Elemento Regulador de Esterol 1 , Zinco
2.
Korean J Orthod ; 46(5): 280-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27668191

RESUMO

OBJECTIVE: The aim of this study was to analyze tooth movement and arch width changes in maxillary dentition following nonextraction treatment with orthodontic mini-implant (OMI) anchorage in Class II division 1 malocclusions. METHODS: Seventeen adult patients diagnosed with Angle's Class II division 1 malocclusion were treated by nonextraction with OMIs as anchorage for distalization of whole maxillary dentition. Three-dimensional virtual maxillary models were superimposed with the best-fit method at the pretreatment and post-treatment stages. Linear, angular, and arch width variables were measured using Rapidform 2006 software, and analyzed by the paired t-test. RESULTS: All maxillary teeth showed statistically significant movement posteriorly (p < 0.05). There were no significant changes in the vertical position of the maxillary teeth, except that the second molars were extruded (0.86 mm, p < 0.01). The maxillary first and second molars were rotated distal-in (4.5°, p < 0.001; 3.0°, p < 0.05, respectively). The intersecond molar width increased slightly (0.1 mm, p > 0.05) and the intercanine, interfirst premolar, intersecond premolar, and interfirst molar widths increased significantly (2.2 mm, p < 0.01; 2.2 mm, p < 0.05; 1.9 mm, p < 0.01; 2.0 mm, p < 0.01; respectively). CONCLUSIONS: Nonextraction treatment with OMI anchorage for Class II division 1 malocclusions could retract the whole maxillary dentition to achieve a Class I canine and molar relationship without a change in the vertical position of the teeth; however, the second molars were significantly extruded. Simultaneously, the maxillary arch was shown to be expanded with distal-in rotation of the molars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...