Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(18): 11978-11987, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652759

RESUMO

The interplay between strong Coulomb interactions and kinetic energy leads to intricate many-body competing ground states owing to quantum fluctuations in 2D electron and hole gases. However, the simultaneous observation of quantum critical phenomena in both electron and hole regimes remains elusive. Here, we utilize anisotropic black phosphorus (BP) to show density-driven metal-insulator transition with a critical conductance ∼e2/h which highlights the significant role of quantum fluctuations in both hole and electron regimes. We observe a T-linear resistivity from the deep metallic phase to the metal-insulator boundary at moderate temperatures, while it turns to Fermi liquid behavior in the deep metallic phase at low temperatures in both regimes. An analysis of the resistivity suggests that disorder-dominated transport leads to T-linear behavior in the hole regime, while in the electron regime, the T-linear resistivity results from strong Coulomb interactions, suggestive of strange-metal behavior. Successful scaling collapse of the resistivity in the T-linear region demonstrates the link between quantum criticality and the T-linear resistivity in both regimes. Our study provides compelling evidence that ambipolar BP could serve as an exciting testbed for investigating exotic states and quantum critical phenomena in hole and electron regimes of 2D semiconductors.

2.
Nanoscale ; 16(7): 3622-3630, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38273810

RESUMO

Layered two-dimensional (2D) materials have gained popularity thanks to their atomically thin physique and strong coupling with light. Here, we investigated a wide band gap (≥ 2 eV) 2D material, i.e., tin disulfide (SnS2), and decorated it with silver nanoparticles, Ag-NPs, for broadband photodetection. Our results show that the SnS2/Ag-NPs devices exhibit broadband photodetection ranging from the ultraviolet to near-infrared (250-1050 nm) spectrum with decreased rise/decay times from 8/20 s to 7/16 s under 250 nm wavelength light compared to the bare SnS2 device. This is attributed to the localized surface plasmon resonance effect and the wide band gap of SnS2 crystal. Furthermore, the HfO2-passivated SnS2/Ag-NPs devices exhibited high photodetection performance in terms of photoresponsivity (∼12 500 A W-1), and external quantum efficiency (∼6 × 106%), which are significantly higher compared to those of bare SnS2. Importantly, after HfO2 passivation, the SnS2/Ag-NPs photodetector maintained the stable performance for several weeks with merely ∼5.7% reduction in photoresponsivity. Lastly, we fabricated a flexible SnS2/Ag-NPs photodetector, which shows excellent and stable performance under various bending curvatures (0, 20, and 10 mm), as it retains ∼80% of its photoresponsivity up to 500 bending cycles. Thus, our study provides a simple route to realize broadband and stable photoactivity in flexible 2D material-based devices.

3.
Adv Sci (Weinh) ; 10(29): e2303437, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37551999

RESUMO

Molybdenum ditelluride (MoTe2 ) exhibits immense potential in post-silicon electronics due to its bandgap comparable to silicon. Unlike other 2D materials, MoTe2 allows easy phase modulation and efficient carrier type control in electrical transport. However, its unstable nature and low-carrier mobility limit practical implementation in devices. Here, a deterministic method is proposed to improve the performance of MoTe2 devices by inducing local tensile strain through substrate engineering and encapsulation processes. The approach involves creating hole arrays in the substrate and using atomic layer deposition grown Al2 O3 as an additional back-gate dielectric layer on SiO2 . The MoTe2 channel is passivated with a thick layer of Al2 O3 post-fabrication. This structure significantly improves hole and electron mobilities in MoTe2 field-effect transistors (FETs), approaching theoretical limits. Hole mobility up to 130 cm-2  V-1 s-1 and electron mobility up to 160 cm-2  V-1 s-1 are achieved. Introducing local tensile strain through the hole array enhances electron mobility by up to 6 times compared to the unstrained devices. Remarkably, the devices exhibit metal-insulator transition in MoTe2 FETs, with a well-defined critical point. This study presents a novel technique to enhance carrier mobility in MoTe2 FETs, offering promising prospects for improving 2D material performance in electronic applications.

4.
Adv Sci (Weinh) ; 10(21): e2301400, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37144526

RESUMO

Achieving low contact resistance (RC ) is one of the major challenges in producing 2D FETs for future CMOS technology applications. In this work, the electrical characteristics for semimetal (Sb) and normal metal (Ti) contacted MoS2 devices are systematically analyzed as a function of top and bottom gate-voltages (VTG and VBG ). The semimetal contacts not only significantly reduce RC but also induce a strong dependence of RC on VTG , in sharp contrast to Ti contacts that only modulate RC by varying VBG . The anomalous behavior is attributed to the strongly modulated pseudo-junction resistance (Rjun ) by VTG , resulting from weak Fermi level pinning (FLP) of Sb contacts. In contrast, the resistances under both metallic contacts remain unchanged by VTG as metal screens the electric field from the applied VTG . Technology computer aided design simulations further confirm the contribution of VTG to Rjun , which improves overall RC of Sb-contacted MoS2 devices. Consequently, the Sb contact has a distinctive merit in dual-gated (DG) device structure, as it greatly reduces RC and enables effective gate control by both VBG and VTG . The results offer new insight into the development of DG 2D FETs with enhanced contact properties realized by using semimetals.

5.
ACS Appl Mater Interfaces ; 15(10): 13299-13306, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36856371

RESUMO

The existence of a novel phenomenon, such as the metal-insulator transition (MIT) in two-dimensional (2D) systems, affords emerging functional properties that provide new aspects for future electronics and optoelectronics. Here, we report the observation of the MIT in black phosphorus field effect transistors by tuning the carrier density (n) controlled by back-gate bias. We find that the conductivity follows an n dependence as σ(n) ∝ nα with α ∼ 1, which indicates the presence of screened Coulomb impurity scattering at high carrier densities in the temperature range of 10-300 K. As n decreases, the screened Coulomb impurity scattering breaks down, developing strong charge density inhomogeneity leading to a percolation-based transition at the critical carrier density (nC). At low carrier densities (n < nC), the system is in the insulating regime, which is expressed by Mott variable range hopping that demonstrates the role of disorder in the system. In addition, the extracted average values of critical exponent δ are ∼1.29 ± 0.01 and ∼1.14 ± 0.01 for devices A and B, respectively, consistent with the 2D percolation exponent of 4/3, confirming the 2D percolation-based MIT in BP devices. Our findings strongly suggest that the 2D MIT observed in BP is a classical percolation-based transition caused by charge inhomogeneity induced by screened Coulomb charge impurity scattering around a transition point controlled by n through back-gate bias.

6.
Influenza Other Respir Viruses ; 17(1): e13088, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36578138

RESUMO

BACKGROUND: There have been varying reports on the potential occurrence and severity of changes to menstruation including the median cycle length, days of bleeding, bleeding heaviness, and menstrual pain, following receipt of COVID-19 vaccinations. We aimed to assess potential postvaccination menstrual changes in women residing in the Middle East. METHODS: We implemented a cross-sectional online survey-based study. Data about the participants' demographic characteristics, menstruation experience, and vaccination status were collected and analyzed among six Arab countries. RESULTS: Among 4942 menstruating females included in this study, females who had received one or more doses of COVID-19 vaccination reported a higher frequency of back pain, nausea, tiredness, pelvic pain with periods, unprescribed analgesics use, and passage of loose stools. They also reported higher scores describing average and worst menstrual pain. Fully vaccinated females reported heavier flow and more days of bleeding. CONCLUSION: Our findings indicate that COVID-19 vaccine may have an effect on menstruation in terms of menstrual pain and bleeding heaviness. The evidence needs to be further investigated in longitudinal studies.


Assuntos
COVID-19 , Menstruação , Feminino , Humanos , Estudos Transversais , Vacinas contra COVID-19 , Dismenorreia , Árabes , COVID-19/epidemiologia , COVID-19/prevenção & controle
7.
ACS Appl Mater Interfaces ; 14(50): 55787-55794, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36474350

RESUMO

Palladium diselenide (PdSe2), as an emerging two-dimensional (2D) layered material, is gaining growing attention in nanoelectronics and optoelectronics due to its thickness-dependent band gap, high carrier mobility, and good air stability. However, its asymmetric pentagon structure is inclined to breed defects. Herein, the intrinsic Se vacancy-induced trap states and their influence on the hopping transport in PdSe2 are systematically investigated. We provide direct evidence that Se vacancies exist in the fresh PdSe2 samples, which results in the localized trapping states inside the band gap. For the few-layer PdSe2, at 77 K, the trap density (Dit) near the midgap is about 2.2 × 1013 cm-2 eV-1, whereas at 295 K, the Dit value increases to ∼7.1 × 1013 cm-2 eV-1. By comparison, the multilayer PdSe2 shows nonobvious temperature-dependent trap behaviors with almost unchanged Dit values of ∼8.1 × 1012 cm-2 eV-1 at midgap in the temperature range between 77 and 295 K. Thus, trap states in the few-layer PdSe2 are more vulnerable to temperature effect. Transport measurements demonstrated that both few-layer and multilayer PdSe2 field-effect transistor (FET) devices show n-type dominant ambipolar behaviors. The electron mobility in the multilayer PdSe2 FET is nearly 15-fold higher than that in the few-layer PdSe2 FET at 315 K, probably owing to the decreased effective mass and suppression of charge impurity scattering in the thicker channel material. However, both FET devices exhibit variable-range hopping over a temperature range from 77 to 240 K and thermally activated hopping at temperatures above 240 K. The hopping transport mechanism is strongly associated with the Se vacancy-induced localized states with poor screening and strong potential fluctuations. This study reveals the important role of structural defects in tailoring and improving the charge transport properties of PdSe2.

8.
Adv Sci (Weinh) ; 9(26): e2202465, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35853245

RESUMO

Surface charge transfer doping (SCTD) using oxygen plasma to form a p-type dopant oxide layer on transition metal dichalcogenide (TMDs) is a promising doping technique for 2D TMDs field-effect transistors (FETs). However, patternability of SCTD is a key challenge to effectively switch FETs. Herein, a simple method to selectively pattern degenerately p-type (p+ )-doped WSe2 FETs via electron beam (e-beam) irradiation is reported. The effect of the selective e-beam irradiation is confirmed by the gate-tunable optical responses of seamless lateral p+ -p diodes. The OFF state of the devices by inducing trapped charges via selective e-beam irradiation onto a desired channel area in p+ -doped WSe2 , which is in sharp contrast to globally p+ -doped WSe2 FETs, is realized. Selective e-beam irradiation of the PMMA-passivated p+ -WSe2 enables accurate control of the threshold voltage (Vth ) of WSe2 devices by varying the pattern size and e-beam dose, while preserving the low contact resistance. By utilizing hBN as the gate dielectric, high-performance WSe2 p-FETs with a saturation current of -280 µA µm-1 and on/off ratio of 109 are achieved. This study's technique demonstrates a facile approach to obtain high-performance TMD p-FETs by e-beam irradiation, enabling efficient switching and patternability toward various junction devices.

9.
ACS Appl Mater Interfaces ; 12(20): 23261-23271, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32347702

RESUMO

We investigate the development of gate-modulated tungsten diselenide (WSe2)-based lateral pn-homojunctions for visible and near-infrared photodetector applications via an effective oxygen (O2) plasma treatment. O2 plasma acts to induce the p-type WSe2 for the otherwise n-type WSe2 by forming a tungsten oxide (WOx) layer upon O2 plasma treatment. The WSe2 lateral pn-homojunctions displayed an enhanced photoresponse and resulted in open-circuit voltage (VOC) and short-circuit current (ISC) originating from the pn-junction formed after O2 plasma treatment. We further notice that the amplitude of the photocurrent can be modulated by different gate biases. The fabricated WSe2 pn-homojunctions exhibit greater photoresponse with photoresponsivities (ratio of the photocurrent and incident laser power) of 250 and 2000 mA/W, high external quantum efficiency values (%, total number of charge carriers generated for the number of incident photons on photodetectors) of 97 and 420%, and superior detectivity values (magnitude of detector sensitivity) of 7.7 × 109 and 7.2 × 1010 Jones upon illumination with visible (520 nm) and near-infrared lasers (852 nm), respectively, at low bias (Vg = 0 V and Vd = 1 V) at room temperature, demonstrating very high-performance in the IR region superior to the contending two-dimensional material-based photonic devices. These superior optoelectronic properties are attributed to the junctions induced by O2 plasma doping, which facilitate the effective carrier generation and separation of photocarriers with applied external drain bias upon strong light absorption.

10.
ACS Appl Mater Interfaces ; 12(12): 14119-14124, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32108466

RESUMO

Recently, multivalued logic (MVL) circuits have attracted tremendous interest due to their ability to process more data by increasing the number of logic states rather than the integration density. Here, we fabricate logic circuits based on molybdenum telluride (MoTe2)/black phosphorus (BP) van der Waals heterojunctions with different structural phases of MoTe2. Owing to the different electrical properties of the 2H and mixed 2H +1T' phases of MoTe2, tunable logic devices have been realized. A logic circuit based on a BP field-effect transistor (FET) and a BP/MoTe2 (2H + 1T') heterojunction FET displays the characteristics of binary logic. However, a drain voltage-controlled transition from binary to ternary logic has been observed in BP FET- and BP/ MoTe2 (2H) heterojunction FET-based logic circuits. Also, a change from binary to ternary characteristics has been observed in BP/MoTe2 (2H)-based inverters at low temperature below 240 K. We believe that this work will stimulate the assessment of the structural phase transition in metal dichalcogenides toward advanced logic circuits and offer a pathway to substantialize the circuit standards for future MVL systems.

11.
J Obstet Gynaecol ; 36(4): 559-61, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26789554

RESUMO

The aim of this audit was to record medical history taking in the records of women attending with early pregnancy issues in order to assess the effect of training in this area. The medical education intervention comprised of a 30-min interactive tutorial. Retrospective chart review at three time points: pre education (July 2013, n = 45), immediately post-education (August 2013, n = 45) and longer term post-intervention (October 2013, n = 20). Pre-education, medical history was missing in 77.8% of charts compared to 13.4% immediately post-intervention and 10% long-term post-intervention (p < 0.05). Similar findings were noted with regard to documentation of age, surgical history, medications, allergies and last menstrual period (LMP). While there was a high rate of ultrasound investigations, the documentation of these (by placing an image in the chart) improved after the intervention. Education in requirements for medical history taking can improve documentation.


Assuntos
Documentação/métodos , Educação Médica/métodos , Anamnese/normas , Prontuários Médicos/normas , Obstetrícia/educação , Adulto , Documentação/normas , Avaliação Educacional/métodos , Feminino , Humanos , Masculino , Auditoria Médica/métodos , Anamnese/métodos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...