Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 267: 115631, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890251

RESUMO

Cadmium (Cd) is a highly toxic heavy metal and readily accumulates in tobacco, which imperils public health via Cd exposure from smoking. Beneficial microbes have a pivotal role in promoting plant growth, especially under environmental stresses such as heavy metal stresses. In this study, we introduced a novel fungal strain Trichoderma nigricans T32781, and investigated its capacity to alleviate Cd-induced stress in tobacco plants through comprehensive physiological and omics analyses. Our findings revealed that T32781 inoculation in soil leads to a substantial reduction in Cd-induced growth inhibition. This was evidenced by increased plant height, enhanced biomass accumulation, and improved photosynthesis, as indicated by higher values of key photosynthetic parameters, including the maximum quantum yield of photosystem Ⅱ (Fv/Fm), stomatal conductance (Gs), photosynthetic rate (Pn) and transpiration rate (Tr). Furthermore, element analysis demonstrated that T. nigricans T32781 inoculation resulted in a remarkable reduction of Cd uptake by 62.2% and a 37.8% decrease in available soil Cd compared to Cd-stressed plants without inoculation. The protective role of T32781 extended to mitigating Cd-induced oxidative stress by improving antioxidant enzyme activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX). Metabolic profiling of tobacco roots identified 43 key metabolites, with notable contributions from compounds like nicotinic acid, succinic acid, and fumaric acid in reducing Cd toxicity in T32781-inoculated plants. Additionally, rhizosphere microbiome analysis highlighted the promotion of beneficial microbes, including Gemmatimonas and Sphingomonas, by T32781 inoculation, which potentially contributed to the restoration of plant growth under Cd exposure. In summary, our study demonstrated that T. nigricans T32781 effectively alleviated Cd stress in tobacco plants by reducing Cd uptake, alleviating Cd-induced oxidative stress, influencing plant metabolite and modulating the microbial composition in the rhizosphere. These findings offer a novel perspective and a promising candidate strain for enhancing Cd tolerance and prohibiting its accumulation in plants to reduce health risks associated with exposure to Cd-contaminated plants.


Assuntos
Nicotiana , Trichoderma , Cádmio/toxicidade , Fumar , Solo
2.
J Adv Res ; 44: 23-37, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725193

RESUMO

INTRODUCTION: Cadmium (Cd) is one of the most detrimental heavy metal pollutants, seriously affecting crop production and human health. Nucleobase-ascorbic acid transporters (NAT) are widely present in many living organisms including plants, animals and microbes; however, the role of NAT in plant Cd tolerance remains unknown. OBJECTIVES: To identify Cd-induced miRNAs that target HvNAT2 and to determine the role of this gene and its product in Cd tolerance. METHODS: High-throughput-sequencing was used to identify the miRNA expression profile of barley roots in response to Cd stress. Overexpression (OX) and RNAi lines were then constructed for HvNAT2 and comparative transcriptomic analysis was performed to determine the function of this transporter examining its effects on traits such as Cd uptake/flux and translocation, morphology and antioxidant capacity in relation to Cd tolerance. In addition, phylogenetic analysis was performed to obtain insights into the evolution of HvNAT2. RESULTS: Cd stress-induced genome-wide expression profiles of miRNAs identified a Cd-induced miRNA, miR156g-3p_3, that had HvNAT2 as its target. HvNAT2 was negatively regulated in the high-Cd-accumulating and Cd-tolerant genotype Zhenong8. Evolutionary analysis indicated that orthologues of the plasma membrane localized, HvNAT2, can be traced back to the sister group of land plants, the streptophyte algae. Overexpression of HvNAT2 increases Cd tolerance with higher tissue Cd accumulation but less oxidative damage in transgenic barley plants. RNAi of HvNAT2 leads to a significant reduction of Cd tolerance. The higher Cd accumulation in roots of the OX3 line was also demonstrated by confocal microscopy and electrophysiology. Transcriptome analysis showed that the enhancement of antioxidant capacity by HvNAT2 was related to stress signaling pathways. Furthermore, oxidative stress tolerance in HvNAT2-OX plants was regulated by the synthesis of phytochelatins and the glutathione metabolism cycle. CONCLUSION: Our study reveals a key molecular mechanism of NAT in Cd tolerance in plants that is useful for sustainable agricultural production and management of hazardous this heavy metal for better environment management and ecosystem function.


Assuntos
Hordeum , Metais Pesados , MicroRNAs , Humanos , Animais , Cádmio/metabolismo , Cádmio/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Hordeum/genética , Ecossistema , Filogenia , Ácido Ascórbico/farmacologia , Metais Pesados/farmacologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , MicroRNAs/genética
3.
ACS Omega ; 7(45): 41212-41223, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406485

RESUMO

The evolution of drug-resistant viral strains following natural acquisition of resistance mutations is a major obstacle to antiviral therapy. Besides the improper prescription of the currently licensed anti-influenza medications, M2-blockers and neuraminidase inhibitors, to control poultry outbreaks/infections potentiates the emergence of drug-resistant influenza variants. Therefore, there is always a necessity to find out new alternatives with potent activity and high safety. Plant extracts and plant-based chemicals represent a historical antiviral resource with remarkable safety in vitro and in vivo to control the emerging and remerging health threats caused by viral infections. Herein, a panel of purified plant extracts and subsequent plant-derived chemicals were evaluated for their anti-avian influenza activity against zoonotic highly pathogenic influenza A/H5N1 virus. Interestingly, santonica flower extract (Artemisia cina) showed the most promising anti-H5N1 activity with a highly safe half-maximal cytotoxic concentration 50 (CC50 > 10 mg/mL) and inhibitory concentration 50 (IC50 of 3.42 µg/mL). To confirm the anti-influenza activity, we assessed the anti-influenza activity of the selected plant extracts against seasonal human influenza A/H1N1 virus and we found that santonica flower extract showed a robust anti-influenza activity that was comparable to the activity against influenza A/H5N1. Furthermore, the mode of action for santonica flower extract with strong inhibitory activity on the abovementioned influenza strains was elucidated, showing a virucidal effect. To go deeper about the activity of the chemometric component of the extract, the major constituent, santonin, was further selected for in vitro screening against influenza A/H5N1 (IC50 = 1.701 µg/mL) and influenza A/H1N1 (IC50 = 2.91 µg/mL). The oxygen of carbonyl functionality in the cyclohexene ring succeeded to form a hydrogen bond with the neuraminidase active site. Despite the fact that santonin revealed similarity to both reference neuraminidase inhibitors in forming hydrogen bonds with essential amino acids, it illustrated shape alignment to oseltamivir more than zanamivir according to Tanimoto algorithms. This study highlights the applicability of santonica flower extract as a promising natural antiviral against low and highly pathogenic influenza A viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...