Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pain Res ; 15: 1203-1219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502403

RESUMO

Background: Nature represents a basic source of medicinal scaffolds that can develop into potent drugs used in the treatment of many diseases. Aim: The present study was planned to evaluate the combined effects of polyherbal methanolic extract of the herbs (fruit of capsicum, bark of cinnamon, rhizome of turmeric and rhizome of ginger) that were individually well known for their analgesic and anti-inflammatory activities. Furthermore, we aimed to develop hydrogel formulation of this polyherbal extract and to characterize and evaluate its analgesic and anti-inflammatory potential. Materials and Methods: Zingiber officinale (R.), Capsicum annuum (L.), Curcuma longa (L.), and Cinnamomum verum (J.) polyherbal extract (GCTC) was prepared by maceration and evaluated for analgesic and anti-inflammatory potential. Then, two different types of hydrogel formulation were prepared. One is pH-based hydrogel in which carbopol-940 was used and the other is temperature-based gel in which methocel-K100 was used as gelling agent. Different concentrations of polyherbal extract (GCTC), at 1%, 3% and 5%, were used in hydrogel formulation. These prepared hydrogel formulations were characterized and evaluated for analgesic and anti-inflammatory potential. Results: Results show that polyherbal extract and all the developed formulations of polyherbal extract (GCTC), at concentrations of 1%, 3% and 5%, have significant analgesic and anti-inflammatory effects with good appearance, homogeneity, spreadability, extrudability and stability. Conclusion: It was concluded from this project that polyherbal extract (GCTC) and its hydrogel have significant analgesic and anti-inflammatory potential.

2.
Pak J Pharm Sci ; 34(4): 1385-1392, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34799311

RESUMO

The study was aimed to design a nano emulsion formulations of Sage oil and to determine its effectiveness in healing the wound using rats as a model. Sage oil nanoemulsion (o/w) was formulated by a spontaneous emulsification method and tested for physicochemical parameters. The wound creation methods namely; circular excision and linear incision were utilized in the present study. Many specifications like tensile strength, DNA, total protein, Hexosamine and Uronic acid, were estimated from the tissues collected from incised wounds. The antioxidant and antimicrobial activity of the oil was estimated from the wound tissue homogenate. Finally epithelialization period and concentration of TNF-α were also measured. A Significant rise in collagen content by 77.52% and tensile strength by 56.20% were noticed in comparison to control. Reduction in period of epithelialization was noticed by 42.85% in comparison to control. The treatment groups confirmed significant antimicrobial activity in comparison to control. It was evident from the results that Sage oil nano emulsion could be the accelerator in wound healing process and it may be devoid of other drawbacks which would be possible with synthetic drug.


Assuntos
Óleos de Plantas/farmacologia , Salvia officinalis/química , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Citocinas/metabolismo , Emulsões , Masculino , Nanoestruturas/administração & dosagem , Oxirredução/efeitos dos fármacos , Óleos de Plantas/administração & dosagem , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...