Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5088, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991147

RESUMO

The China-Pakistan Economic Corridor (CPEC) is an ongoing mega-construction project in Pakistan that necessitates further exploration of new natural resources of aggregate to facilitate the extensive construction. Therefore, the Late Permian strata of Chhidru and Wargal Limestone for aggregates resources were envisaged to evaluate their optimal way of construction usage through detailed geotechnical, geochemical, and petrographic analyses. Geotechnical analysis was performed under BS and ASTM standards with the help of employing different laboratory tests. A simple regression analysis was employed to ascertain mutual correlations between physical parameters. Based on the petrographic analysis, the Wargal Limestone is classified into mudstones and wackestone, and Chhidru Formation is categorized into wackestone and floatstone microfacies, both containing primary constituents of calcite and bioclasts. The geochemical analysis revealed that the Wargal Limestone and Chhidru Formation encompass calcium oxide (CaO) as the dominant mineral content. These analyses also depicted that the Wargal Limestone aggregates bear no vulnerability to alkali-aggregate reactions (AAR), whereas the Chhidru Formation tends to be susceptible to AAR and deleterious. Moreover, the coefficient of determination and strength characteristics, for instance, unconfined compressive strength and point load test were found inversely associated with bioclast concentrations and directly linked to calcite contents. Based on the geotechnical, petrographic, and geochemical analyses, the Wargal Limestone proved to be a significant potential source for both small and large-scale construction projects, such as CPEC, but the Chhidru Formation aggregates should be used with extra caution due to high silica content.

2.
Sensors (Basel) ; 22(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590807

RESUMO

Landslides are the most catastrophic geological hazard in hilly areas. The present work intends to identify landslide susceptibility along Karakorum Highway (KKH) in Northern Pakistan, using landslide susceptibility mapping (LSM). To compare and predict the connection between causative factors and landslides, the random forest (RF), extreme gradient boosting (XGBoost), k nearest neighbor (KNN) and naive Bayes (NB) models were used in this research. Interferometric synthetic aperture radar persistent scatterer interferometry (PS-InSAR) technology was used to explore the displacement movement of retrieved models. Initially, 332 landslide areas alongside the Karakorum Highway were found to generate the landslide inventory map using various data. The landslides were categorized into two sections for validation and training, of 30% and 70%. For susceptibility mapping, thirteen landslide-condition factors were created. The area under curve (AUC) of the receiver operating characteristic (ROC) curve technique was utilized for accuracy comparison, yielding 83.08, 82.15, 80.31, and 72.92% accuracy for RF, XGBoost, KNN, and NB, respectively. The PS-InSAR technique demonstrated a high deformation velocity along the line of sight (LOS) in model-sensitive areas. The PS-InSAR technique was used to evaluate the slope deformation velocity, which can be used to improve the LSM for the research region. The RF technique yielded superior findings, integrating with the PS-InSAR outcomes to provide the region with a new landslide susceptibility map. The enhanced model will help mitigate landslide catastrophes, and the outcomes may help ensure the roadway's safe functioning in the study region.


Assuntos
Deslizamentos de Terra , Algoritmos , Teorema de Bayes , Sistemas de Informação Geográfica , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA