Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955217

RESUMO

With the aim of investigating the response of concrete to the dual effect of accidental fire high temperatures and possible induced impacts due to falling fragmented or burst parts or objects, an experimental work is conducted in this study to explore the influence of exposure to temperatures of 200, 400 and 600 °C on the responses of concrete specimens subjected to impact loads. Cylindrical specimens are tested using the recommended repeated impact procedure of the ACI 544-2R test. Three concrete mixtures with concrete nominal design strengths of 20, 40 and 80 MPa are introduced to represent different levels of concrete strength. From each concrete mixture, 24 cylinders and 12 cubes are prepared to evaluate the residual impact resistance and compressive strength. Six cylindrical specimens and three cubes from each concrete mixture are heated to each of the three levels of high temperatures, while the other six cylinders and three cubes are tested without heating as reference specimens. The test results show that the behavior of impact resistance is completely different from that of compressive strength after exposure to high temperatures; the cylindrical specimens lose more than 80% of the cracking and failure impact resistance after exposure to 200 °C, while impact resistance almost vanishes after exposure to 400 and 600 °C. Concrete compressive strength is found to be effective on the unheated impact specimens, where the higher-strength cylinders retain significantly higher impact numbers. This effect noticeably decreases after exposure to 200 and 400 °C, and vanishes after exposure to 600 °C.

2.
Materials (Basel) ; 15(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35057172

RESUMO

Despite the fact that the mechanical properties of Engineered Cementitious Composites (ECC) after high-temperature exposure are well investigated in the literature, the repeated impact response of ECC is not yet explored. Aiming to evaluate the residual impact response of ECC subjected to sub-high temperatures under repeated drop weight blows, the ACI 544-2R repeated impact test was utilized in this study. Disk impact specimens (150 mm diameter and 64 mm thickness) were prepared from the M45 ECC mixture but using polypropylene fibers, while similar 100 mm cube specimens and 100 × 100 × 400 mm prism specimens were used to evaluate the compressive and flexural strengths. The specimens were all cast, cured, heated, cooled, and tested under the same conditions and at the same age. The specimens were subjected to three temperatures of 100, 200 and 300 °C, while a group of specimens was tested without heating as a reference group. The test results showed that heating to 100 and 200 °C did not affect the impact resistance noticeably, where the retained cracking and failure impact numbers and ductility were higher or slightly lower than those of unheated specimens. On the other hand, exposure to 300 °C led to a serious deterioration in the impact resistance and ductility. The retained failure impact numbers after exposure to 100, 200, and 300 °C were 313, 257, and 45, respectively, while that of the reference specimens was 259. The results also revealed that the impact resistance at this range of temperature showed a degree of dependency on the compressive strength behavior with temperature.

3.
Heliyon ; 6(1): e03198, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31956719

RESUMO

Steel fiber has become a proven material that can significantly alter the behavior of different types of concrete mixtures from brittle to more ductile ones. Rich literature is currently available on the mechanical properties of steel fiber-reinforced self-compacting concrete. However, the investigation of the impact resistance of this material to drop weight is still required to enrich the knowledge about its behavior under different loading conditions. An experimental work was conducted in this research to evaluate the performance of steel fiber-reinforced self-compacting concrete under repeated impact loading using the repeated blows test recommended by ACI 544-2R. The tests investigated the effect of drop weight and drop height in addition to fiber content. Straight micro-steel fibers were incorporated in three volumetric contents of 0.5, 0.75 and 1.0% and were compared with a similar plain mixture. The test equipment was adjusted to conduct repeated impact loading from different drop-heights and using different drop-weights. The adopted drop-heights were 450, 575 and 700 mm, while the adopted drop-weights were 4.5, 6.0 and 7.5 kg. The combination of the adopted drop-heights and weights composes four loading cases in addition to the standard loading case with a drop-weight and drop-height of 4.5 kg and 450 mm. The inclusion of micro steel fiber was found to significantly increase the impact resistance of self-compacting concrete with percentage developments ranging from 150 to 860% compared to plain samples. The specimens tested under 4.5 kg and 450 mm drop weight and height exhibited the highest percentage improvement in impact resistance among the five loading cases. The results also showed that the impact ductility of fibrous specimens was up to 24% higher than that of plain specimens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...